Переваривание стероидов и всасывание холестерина в кишечнике. Биохимия человека

Холестерин является органическим соединением, относящимся к классу стеринов, в биологическом отношении это вещество является одним из важнейших в организме.

На холестерол возложено большое количество функций. Этот липофильный спирт составляет основу клеточной мембраны, выполняет функции модификатора биослоя. За счет наличия его в структуре плазматической мембраны, последняя приобретает определенную жесткость. Это соединение является стабилизатором текучести клеточной мембраны.

Помимо этого холестерол участвует:

  • в процессе синтеза стероидных гормонов;
  • в процессе образования желчных кислот;
  • в реакциях синтеза витаминов группы D;

Дополнительно этот биологически активный компонент обеспечивает регуляцию проницаемости клеточной мембраны и предохраняет эритроциты крови от разрушающего воздействия на них гемолитических токсинов.

Холестерин является органическим соединением практически не растворимым в воде, поэтому в составе крови он содержится в виде комплексов с белками переносчиками. Такие комплексы носят название липопротеины.

Существует несколько групп комплексных соединений белков и холестеролом.

Основными являются следующие:

  1. ЛПНП – липопротеины низкой плотности.
  2. ЛПОНП – липопротеины очень низкой плотности.
  3. ЛПВП – липопротеины высокой плотности.

ЛПНП и ЛПОНП являются соединениями способными при большой концентрации их в плазме крови спровоцировать развитие атеросклероза и связанных с ним тяжелых осложнений.

Синтез холестерина и причины повышения его уровня в крови

Холестерин попадает во внутреннюю среду организма в процессе питания, в качестве одного из компонентов продуктов питания животного происхождения.

Таким путем в организм доставляется около 20% от общего количества вещества.

Этот тип холестерина имеет эндогенное происхождение.

Большая часть холестерола синтезируется организмом самостоятельно. Липофильный спирт, продуцируемый клетками некоторых органов, имеет экзогенное происхождение.

В каких органах происходит выработка холестерина?

Такими органами являются:

  • печень – синтезирует около 80% холестерина экзогенного происхождения;
  • тонкий кишечник – обеспечивает синтез около 10% необходимого количества этого биоактивного компонента;
  • почки, надпочечники, половые железы и кожные покровы суммарно вырабатывают около 10% от общего количества необходимого липофильного спирта.

В организме человека содержится приблизительно 80% от общего количества холестерина в связанной форме, а остальные 20% — в свободной.

Чаще всего нарушения уровня холестерола в организме связаны с возникновением сбоев в работе органов осуществляющих его биосинтез.

Появлению избытка липидов помимо употребления жирной пищи могут способствовать следующие факторы:

  1. Недостаточное производство клетками печени желчных кислот, основным компонентом которых является липофильный спирт, приводит к накоплению излишков этого вещества в плазме крови и образованию холестериновых отложений на стенках сосудов кровеносной системы в виде бляшек.
  2. Возникновение недостатка белковых компонентов, необходимых для синтеза печенью комплексов ЛПВП, ведет к возникновению дисбаланса между ЛПНП и ЛПВП. Равновесие смещается в сторону увеличения количества ЛПНП.
  3. Избыток холестерола в употребляемой пище ведет повышению уровня содержания ЛПНП в плазме.
  4. Ухудшение способности печени синтезировать и выводить желчь и излишки холестерола с ней с калом, что способствует накоплению холестерина и развитию атеросклероза, жирового гепатоза, дисбактериоза из-за размножения патогенной микрофлоры.

В случае если правила питания соблюдаются, а уровень липидов отличается от нормального, рекомендуется обратиться в медучреждение для проведения обследования и выявления причин, спровоцировавших возникновение патологического состояния.

Микрофлора кишечника и холестерин

Уровень сахара

Нормальная циркуляция желчных кислот может быть нарушена в результате развития глубоких микробиологических патологий в кишечнике.

Достоверно известно, что нормальная микрофлора способствует осуществлению процессов рециркуляции желчных кислот и регулированию количества холестерола в плазме крови.

Некоторые аутоштаммы бактерий – родная микрофлора полости кишечника – принимают активное участие в синтезе липофильного спирта, часть микроорганизмов осуществляет трансформацию этого соединения, а часть его разрушение и выведение из организма.

В результате воздействия на организм стрессовой ситуации усиливаются процессы, сопровождаемые ускоренным размножением гнилостной микрофлоры в тонком кишечнике.

Стрессовая ситуация может быть спровоцирована различными факторами, основными среди которых являются следующие:

  • прием лекарственных препаратов;
  • негативное психологическое воздействие;
  • негативное воздействие в результате развития инфекционного процесса;
  • негативное влияние на внутреннюю среду в результате развития гельминтов.

Все указанные негативные факторы приводят к повышению уровня интоксикации, под влиянием которой нарушаются процессы связывания и высвобождения желчных кислот. Это негативное влияние провоцирует усиление всасывания желчных кислот. Результатом такого негативного влияния является возврат в клетки печени до 100% от общего количества вырабатываемых печенью кислот, поступающих в просвет тонкого кишечника.

Повышение всасываемости этого компонента приводит к снижению интенсивности синтезирования кислот в гепатоцитах и как следствие к повышению количества липидов в плазме крови.

Возникает круговая зависимость, в результате которой дисбактериоз кишечника провоцирует снижение интенсивности биосинтеза желчных кислот и сниженное их поступление в просвет тонкого кишечника. Что в свою очередь ведет к усугублению дисбактериоза.

Возникновение дисбактериоза приводит к тому, что холестерин в кишечнике синтезируется в значительно меньшем объеме, провоцируя развитие нарушений водно-электролитного, кислотно-щелочного и энергетического баланса. Все указанные патологические явления вызывают длительное и устойчивое нарушение работы органов ЖКТ.

Недостаточное количество кислот продуцируемых печенью вызывает нарушение всасывания, и переваривания поступающей пищи.

Помимо этого наблюдается снижение стерилизующих свойств желчи, что создает благоприятные условия для внедрения гельминтов и значительного усиления патогенных микробных содружеств. Такая ситуация приводит к увеличению количества отрицательной флоры и повышению степени внутренней интоксикации.

Возникновение усиленной интоксикации приводит к перерасходу ЛПВП.

Недостаточное количество ЛПВП в крови смещает отношение между ними и ЛПНП в сторону увеличения количества липопротеинов низкой плотности, провоцируя тем самым выпадение последних в виде кристаллов в осадок на стенках кровеносной системы.

Связь гельминтозов и уровня холестерина

Яйца и личинки гельминтов, усиленно мигрирующие по сосудистой системе, провоцируют повреждение стенок, что приводит к выпадению кристаллов в осадок на стенках с формирование холестериновых бляшек.

Чаще всего таким повреждениям подвержены сосуды внутренних органов – печени, почек и легких.

Повреждение сосудистой системы печени и почек вызывает нарушение в функционировании органов и приводит к развитию заболеваний сопровождаемых, возникновением сбоев в синтезе ЛПВП. Недостаточное поступление желчных кислот в просвет толстой кишки вызывает расстройство превращения холестерина в стероидные гормоны и нарушает протекание реакций обеспечивающих утилизацию холестерина. Указанные патологии способствуют возникновению изменений в моторике кишечника, то ведет к подавлению антиоксидантной защиты.

Такие нарушения провоцируют повышение риска развития онкологических заболеваний.

Микрофлора кишечника и обмен холестерина

Кишечная микрофлора состоит из целого комплекса разнообразных микроорганизмов. Наибольшую долю среди них занимают бифидобактерии и лактобактерии, также к этой группе относятся эшерихии и энтерококки.

Постоянными представителями нормальной микрофлоры кишечника являются также пропионовокислые бактерии. Эти микроорганизмы вместе с бифидобактериями относятся к группе Corynebacterium и обладают ярко выраженными пробиотическими свойствами.

В настоящий момент исследования доказали что указанные микроорганизмы представляют собой важнейшее звено в обеспечении гомеостаза холестерина и развитии такой патологии, как гиперхолестеринемия.

Нормальная микрофлора ЖКТ препятствует процессу абсорбции холестерина из просвета кишки. Излишки этого компонента трансформируются под влиянием бактерий и выводятся из организма в составе каловых масс.

Присутствие в каловых массах копростанола в настоящий момент рассматривается как микроб-ассоциированная характеристика.

Кишечная микрофлора способна не только разрушать и связывать , но и синтезировать его. Интенсивность синтеза зависит от степени колонизации ЖКТ микробными штаммами.

Изменение микроэкологических условий в кишечнике всегда сопровождается изменением липидного состава в плазме крови.

О взаимосвязи между холестерином и работой кишечника рассказано в видео в этой статье.

Уровень сахара

Последние обсуждения.

Холестерин, общее количество в крови которого выше 6,5 ммоль/л, требует немедленной коррекции. В том случае, когда диета, физические упражнения и повышенная двигательная активность не способны нормализовать обменные процессы, прибегают к помощи медикаментов. Следует понимать, что медикаментозная терапия проявит эффективность только в том случае, если пациент будет прислушиваться к рекомендациям лечащего врача, избегая самолечения. Лекарства, способные влиять на уровень холестерина в крови, снижая его, имеют массу особенностей, а также противопоказания. Какими бывают лекарства против холестерина, как именно они воздействуют на организм и какие из них самые эффективные, узнаем далее.

В зависимости от того, каким именно образом лекарственный препарат понижает уровень холестерина в крови, все медикаменты можно условно разделить на такие фармакологические группы:

  1. Фибраты – оказывают комплексное воздействие, снижая естественный синтез «плохого» холестерина. Их комплексное воздействие имеет массу побочных реакций, однако оказываемый эффект является самым быстрым и продолжительным на сегодняшний день.
  2. Корректоры липидного обмена – способствуют выработке хорошего холестерина, а также не позволяют плохому накапливаться в сосудах.
  3. Препараты, не позволяющие холестерину всасываться в кишечнике – их деятельность направлена на замедление всасывания клеток из самой пищи, что позволяет выровнять баланс естественного холестерина, синтезируемого клетками печени, и искусственного, попадающего с пищей извне.
  4. Статины – одни из самых эффективных препаратов для понижения, компоненты которых способны влиять на ферменты печени, блокируя их выработку. При этом резко снижается выработка холестерина, от чего его уровень в крови уменьшается естественным способом.
  5. Секвестранты желчных кислот – компоненты медикаментов, попадая в полость кишечника, захватывают желчные кислоты, нейтрализуя их и выводя из организма.

Какую группу препаратов назначит врач, зависит от диагноза и первопричины заболевания. Препараты для снижения холестерина в крови имеют противопоказания и не могут назначаться разным людям в одинаковых концентрациях и пропорциях. Уровень этого компонента на момент лечения контролируется при помощи лабораторного анализа крови, что помогает установить, эффективен ли данный препарат в конкретном случае. Поэтому не стоит заниматься самолечением, которое может быть не только неэффективным, но и иметь массу побочных проявлений. Как понизить холестерин в крови и при этом не спровоцировать развитие других патологий, знает только специалист.

Фибраты

Препараты данной группы нормализуют метаболизм липидов, что позволяет восстановить естественный уровень холестерина в крови, с минимальными затратами для здоровья. Их действие направлено на угнетение выработки триглицеридов клетками печени, а также на естественное выведение холестероловых соединений из организма. Чаще всего такие медикаменты назначают при наличии сахарного диабета и других аутоиммунных заболеваниях, которые сопровождаются нарушением обменных процессов в организме.

Преимущества

Фибраты способны оказывать комплексное воздействие, которое заключается в следующих преимуществах:

  1. Блокируют непосредственно клетки печени, задействованные в выработке холестерина.
  2. Обладают противовоспалительным и антиоксидантным свойством.
  3. Тонизируют истонченные стенки сосудов, очищая их от накоплений и бляшек.
  4. Препятствуют сгущению крови.
  5. Могут использоваться в комплексе с другими лекарствами, снижающие холестерин в крови.
  6. Не вызывают аллергических реакций.

Фибраты могут назначаться пациентам, которые имеют низкий уровень липидопротеинов высокой плотности.

Недостатки

Довольно часто фибраты провоцируют развитие побочных реакций в виде расстройства пищеварительной функции (тошнота, рвота, диарея), а также нервных расстройств, вплоть до депрессивного состояния и апатии. При наличии серьезных расстройств нервной системы и сердечно-сосудистых заболеваний, лечение препаратами данной группы производят исключительно под контролем врачей.

Медикаменты

Лекарства последнего поколения, способные оказывать комплексное воздействие на организм, быстро снижая уровень холестерина в крови, имеют такие фармакологические наименования:

  • Липантил;
  • Ципрофибрат;
  • Экслип;
  • Гемфиброзил;
  • Безафибрат;
  • Грофибрат;
  • Трайкор;
  • Гевилон;
  • Фенофибрат;
  • Клофибрат.

Лекарственные препараты отпускаются по рецепту врача, а их прием ведется только после подтверждения диагноза и исследований уровня холестерина в крови.


Корректоры липидного обмена

Представлены препаратами, изготовленными из натурального растительного сырья. Восполняют дефицит фосфолипидов, из-за недостатка которых в организме происходит сбой липидного обмена, при котором уровень плохого холестерина стремительно растет. Препараты, понижающие холестерин, воздействуют непосредственно на клетки печени, восстанавливая их.

Преимущества

Среди преимуществ этой группы лекарств, снижающих холестерин, можно выделить нормализацию и регенерацию клеток печени, а также предотвращение развития соединительной ткани. Практически все лекарства основываются на натуральных компонентах, полученных естественным путем. Это позволяет утверждать об отсутствии развития побочных реакций, а также о хорошей переносимости всеми категориями пациентов.

Недостатки

Крайне редко могут развиваться побочные реакции в виде послабления стула и отсутствия аппетита. При наличии повышенной чувствительности к компонентам препарата могут развиваться аллергические реакции в виде крапивницы и ангионевротического отека.

Медикаменты

Лекарства, повышающие уровень полезного холестерина и снижающие липидопротеины низкой и очень низкой плотности, следующие:

  • Липостабил;
  • Эссенциале;
  • Липостат;
  • Липофорд;
  • Липтонорм.

Препараты, препятствующие всасыванию холестерина в кишечнике

Лекарства этой группы способны оказывать влияние на процесс пищеварения в кишечнике. Активные компоненты соединяются с липидами, поступающими с пищей, нейтрализуя и удаляя их из организма. Также снижается концентрация плохого холестерина в крови, что происходит благодаря способности препарата нейтрализовать эти клетки в сосудах, стимулируя их продвижение в печень для дальнейшего распада. При повышенном холестерине эти препараты оказывают вспомогательное воздействие, поэтому не могут использоваться в качестве основного лекарства. Хорошо сочетаются с другими лекарствами, которые снижают холестерин.

Преимущества

Таблетки от холестерина и пищевые добавки хорошо переносятся организмом, практически не вызывая побочных эффектов. Способны проявлять такие свойства:

  1. Снижают аппетит, поэтому человек начинает употреблять меньше пищи, что само по себе способствует нормализации обменных процессов.
  2. Ускоряют выведение желчных кислот, что в свою очередь провоцирует захват свободного холестерина в крови и его транспортировку в печень.
  3. Проявляют свойства сорбента, нейтрализуя не только нужный компонент, но и вредные компоненты кишечника, не влияя на состав его микрофлоры.

Эффективность препаратов этой группы также во многом зависит от качества употребляемой пищи. Если пациент игнорирует советы доктора о необходимости соблюдения диеты, питается неправильно и злоупотребляет жирной пищей, эффект в данном случае может стремиться к нулю.


Недостатки

В первые 2-3 дня приема препаратов могут развиваться такие симптомы, как:

  • вздутие живота и повышенное газообразование;
  • тошнота и снижение аппетита;
  • боли в эпигастральной части живота;
  • расстройства стула.

Обычно все эти симптомы проходят самостоятельно, если пациент соблюдает диету. В отдельных случаях может наблюдаться аллергическая реакция, которая связана с наличием индивидуальной непереносимости компонентов препарата. Категорически запрещено использовать препараты данной группы пациентам с патологиями кишечника в виде непроходимости.

Медикаменты

Самый эффективный препарат для снижения холестерина в крови данной группы – Гуарем. Эта пищевая добавка, которую выпускают в виде гранул, при контакте с водой образует подобие желе, оказывая свойства сорбента в кишечнике, нейтрализуя холестерин. Также имеются его аналоги, обладающие подобными фармакологическими свойствами:

  • Нотео;
  • Меридиа;
  • Орсотен.

Статины

Препараты этой группы обладают максимальной эффективностью, поскольку их деятельность направлена на блокировку ферментов печени, которые продуцируют холестерин. При этом количество плохого вещества резко снижается, в то время как количество рецепторов к липопротеинам высокой плотности увеличивается. Статины могут назначаться в качестве основного лекарственного препарата, способного снижать холестерин и контролировать его уровень. Их прием приходится на вечернее время, поскольку максимальный синтез этого вещества производится именно ночью.

Практически все препараты безопасны и не вызывают развития серьезных патологий в пищеварительном тракте. При необходимости статины можно сочетать с фибратами, что позволит усилить и ускорить процесс расщепления холестерина и его выведения из организма.

Преимущества

Препараты для снижения уровня холестерина в крови статиновой группы обладают массой преимуществ, среди которых:

  1. Проявление первых результатов через 2-3 суток.
  2. Не оказывают никакого влияния на углеводный и пуриновый обмен, поэтому их использование разрешается пациентам с сахарным диабетом и другими аутоиммунными заболеваниями.
  3. При необходимости можно увеличивать дозировку, что не скажется на здоровье пациента.

Лекарства хорошо сочетаются с другими медикаментами, чье действие направлено на стабилизацию обменных процессов.

Недостатки

Как и любые другие лекарства, уменьшающие холестерин, статины могут проявлять побочные реакции в таких проявлениях, как:

  • тошнота и рвота;
  • боль в правом подреберье;
  • запоры, которые сменяются продолжительной диареей;
  • мышечная слабость.

При неправильно подобранной дозировке и неверном сочетании с другими фармакологическими группами, статины могут проявлять агрессию относительно клеток печени, провоцируя развитие расстройств ее функционирования. Уменьшение продуктивности печени скажется на процессах пищеварения и обмена веществ, что лишь усугубит ситуацию.

Медикаменты

Средства от холестерина статиновой группы следующие:

  • Правастатин;
  • Аторвастатин;
  • Питавастатин;
  • Симвастатин;
  • Овенкор;
  • Холвасим;
  • Вазатор;
  • Лескол;
  • Торвакард;
  • Анвистат.

Какие препараты из них лучше, безопаснее и помогут снизится холестерину максимально быстро, зависит от конкретной ситуации, возраста и общего состояния пациента.

Секвестранты желчных кислот

Препараты этой группы проявляют двойное воздействие. При попадании в кишечник, они захватывают и нейтрализуют все желчные кислоты, после чего в организме происходит их недостаток. Клетки печени запускают процесс, позволяющий синтезировать эти недостающие кислоты из уже имеющихся клеток холестерина. Происходит естественный забор вредных компонентов из крови, что позволяет нормализовать его уровень.

Преимущества

Среди плюсов использования этих лекарств от высокого холестерина выделяют:

  • действуют исключительно в просвете кишечника, не всасываясь в кровь;
  • не влияют на микрофлору кишечника;
  • хорошо сочетаются с другими препаратами;
  • легко переносятся пациентами с патологиями.

Недостатки

Крайне редко секвестранты провоцируют расстройство пищеварения, которое сопровождается диареей и повышенным газообразованием.

Медикаменты

Средства от повышенного холестерина могут иметь такие названия:

  • Колестипол;
  • Колестирамин;
  • Колесевелам.

Другие препараты

Таблетки при холестерине, которые имеют неплохие отзывы среди пациентов, это Пробукол и Никотиновая кислота. Первый в кратчайшие сроки провоцирует снижение плохого холестерина, но влияет также и на концентрацию хорошего. Отличается довольно длительным курсом применения (до 6 месяцев), а первые результаты проявляются спустя 2-3 месяца лечения.

Никотиновая кислота по своей природе является витамином группы В, поэтому увеличивает концентрацию ЛПНП и снижает ЛПОВП. При этом холестерин снижается вполне естественным путем, но крайне медленно. Процесс может затягиваться на 5-7 месяцев. Никотиновая кислота может использоваться в комплексе с другими мед препаратами, помогая повысить хороший холестерин и заставляя плохой снижаться.

Таким образом, средства для снижения холестерина обладают различными способами воздействия на организм, что необходимо учитывать. Некоторые повышают полезный холестерин, а другие – снижают его вместе с вредным. Список представленных медикаментов подходит исключительно для ознакомления. Назначать какой-либо препарат вправе только специалист, который ознакомлен с заболеванием и обладает определенными навыками. Самолечение недопустимо.

Метаболизм холестерина в организме человека играет чрезвычайно важную роль. Холестерин выполняет многие физиологические функции:

  • является пластическим материалом - входит в состав мембраны клеток, обеспечивая их стабильность;
  • участвует в синтезе желчных кислот, необходимых для эмульгирования и всасывания жиров в тонком кишечнике;
  • служит предшественником стероидных гормонов коры надпочечников, а также участвует в синтезе половых гормонов (эстрадиол, тестостерон и др.), без холестерина производство этих гормонов невозможно;
  • участвует в синтезе витамина D.

В организме взрослого человека содержится порядка 140-150 г холестерина - приблизительно 2 мг на 1 кг массы тела. Всё это количество сосредоточено в 3 пулах:

  • быстро обменивающийся пул (пул А) - составляет около 30 г, включает холестерин содержащийся в печени и других паренхиматозных органах, в кишечной стенке и плазме крови. Обновление этого пула происходит ежедневно со скоростью приблизительно 1 г/сутки, следовательно, полное обновление пула составляет около 30 суток;
  • медленно обменивающийся пул (пул Б) - составляет около 50 г, включает холестерин всех других органов и тканей, кроме нервной системы и соединительной ткани;
  • очень медленно обменивающийся пул(пул В) - составляет 60 г, включает холестерин головного мозга, нервов и соединительной ткани. Скорость обновления этого пула очень мала и может исчисляться месяцами и годами, что в большей степени относится к белому веществу головного мозга.

Ежедневно организм расходует около 1200-1300 мг холестерина. Часть этого количества идёт на образование желчных кислот, стероидных гормонов, другая часть - выводится с калом, теряется со слущивающимся эпителием кожи и секретом сальных желез, используя запасы быстро обменивающегося пула. Для восполнения этих потерь, то есть для восстановления запасов быстро обменивающегося пула, организм синтезирует в сутки около 800-1000 мг холестерина, дополнительно получая около 400-500 мг с пищей.

Всасывание холестерина, поступающего с пищей, происходит в тонкой кишке. Стоит отметить, что в тонкую кишку поступает не только пищевой (экзогенный), но и эндогенный холестерин. В целом, в тонкий кишечник поступает порядка 1,8-2,5 г холестерина из следующих источников:

  • холестерин пищи - около 0,4-0,5 г/сутки;
  • холестерин желчи - 1-2 г/сутки;
  • холестерин эпителия желудочно-кишечного тракта и кишечного сока - около 0,5 г/сутки.

Часть холестерина эпителия желудочно-кишечного тракта и кишечного сока подвергается в толстой кишке воздействию ферментов микробной флоры, превращается в копростерин и выделяется с калом. Всасывание холестерина происходит в неэстерифицированной форме в составе смешанных жировых мицелл, состоящих из желчных кислот, жирных кислот, моноглицеридов, фосфолипидов.

Синтез холестерина осуществляется в клетках почти всех органов и тканей, при этом в гепатоцитах синтезируется около 80% всего количества, в стенке тонкой кишки - 10%, в коже - около 5%. Таким образом, основным источником эндогенного холестерина является печень.

В синтезе холестерина принимает участие большое количество ферментов. Ключевым, определяющим скорость процесса синтеза считается фермент гидроксиметил-глутарил-КоА-редуктаза (ГМГ-КоА-редуктаза). Блокирование активности этого фермента является важнейшим механизмом действия статинов - наиболее активных гипохолестеринемических средств.

Как указывалось выше, основным поставщиком эндогенного холестерина является печень, но она сама также нуждается в холестерине для обеспечения жизнедеятельности гепатоцитов. Потребность печени в холестерине удовлетворяется как за счёт его синтеза гепатоцитами, так и путём поступления его из крови.

При недостаточности холестерина в гепатоцитах (например, под влиянием приёма статинов или при различных патологических процессах в печени) происходит активация расположенных на поверхности гепатоцитов специфических рецепторов, осуществляющих распознавание и захват липопротеинов низкой плотности, богатых холестерином. Эти рецепторы участвуют в регуляции уровня холестерина в крови, который понижается с их активацией.

Переваривание холестеридов и всасывание холестерина. Понятие об экзогенном и эндогенном холестерине.

Холестерин в организме человека бывает 2 видов:

1) холестерин, поступающий с пищей через ЖКТ и называемый экзогенный

2) холестерин, синтезируемый из Ац – КоА - эндогенный.

С пищей ежедневно поступает ≈ 0,2 – 0,5 г, синтезируется ≈ 1 г (почти все клетки за исключением эритроцитов синтезируют холестерин, 80% холестерина синтезируется в печени.)

Взаимоотношения экзо и эндогенного холестерина в определенной степени конкурентные – холестерин пищи ингибирует его синтез в печени.

В составе пищи холестерин находится в основном в виде эфиров. Гидролиз эфиров холестерола происходит под действием холестеролэстеразы. Продукты гидролиза всасываются в составе смешанных мицелл.

Всасывание холестерина происходит в основном в тощей кишке (пищевой холестерин всасывается почти полностью – если в пище его не очень много)

Всасывание холестерина осуществляется только после эмульгирования эфиров холестерина. Эмульгаторами являются желчные кислоты, моно- и диглицериды и лизолецитины. Холестериды гидролизуются холестеринэстеразой поджелудочной железы.

Пищевой и эндогенный холестерин находится в просвете кишечника в неэстерифицированной форме в составе сложных мицелл (желчные, жирные кислоты, лизолецитин), причем поступают в состав слизистой кишечника не вся мицелла целиком, а ее отдельные фракции.

Поглощение холестерина из мицелл – пассивный процесс, идущий по градиенту концентрации. Поступивший в клетки слизистой холестерин этерифицируется холестеринэстеразой или АХАТ (у человека это в основном олеиновая кислота). Из клеток слизистой кишечника холестерин поступает в лимфу в составе ХМ, из них он переходит в ЛНП и ЛВП. В лимфе и крови 60-80% всего холестерина находится в этерифицированном виде.

Процесс всасывания холестерина из кишечника зависит от состава пищи: жиры и углеводы способствуют его всасыванию, растительные стероиды (структурные аналоги) блокируют этот процесс. Большое значение принадлежит желчным кислотам (все функции активируют – улучшают эмульгирование, всасывание). Отсюда значение лекарственных веществ, блокирующих всасывание желчных кислот.

Основные этапы синтеза холестерина. Химизм реакции образования мевалоновой кислоты. Ключевой фермент синтеза холестерина. Представьте схематически скваленовый путь синтеза холестерина

Ключевой фермент биосинтеза холестерина - ГМГ-редуктаза

Локализация:печень,кишечник,кожа

Реакции синтеза холестерола происходят в цитозоле клеток. Это один из самых длинных метаболических путей в организме человека.

Источник-ацетил-КоА

1 этап-Образование мевалоната

Две молекулы ацетил-КоА конденсируются ферментом тиолазой с образованием ацетоацетил-КоА.

Фермент гидроксиметилглутарил-КоА-синтаза присоединяет третий ацетильный остаток с образованием ГМГ-КоА (3-гидрокси-3-метилглутарил-КоА).

Следующая реакция, катализируемая ГМГ-КоА-редуктазой, является регуляторной в метаболическом пути синтеза холестерола. В этой реакции происходит восстановление ГМГ-КоА до мевалоната с использованием 2 молекул NADPH. Фермент ГМГ-КоА-редуктаза - гликопротеин, пронизывающий мембрану ЭР, активный центр которого выступает в цитозоль.

2 этап - Образование сквалена

На втором этапе синтеза мевалонат превращается в пятиуглеродную изопреноидную структуру, содержащую пирофосфат - изопентенилпирофосфат. Продукт конденсации 2 изопреновых единиц - геранилпирофосфат. Присоединение ещё 1 изопреновой единицы приводит к образованию фарнезилпирофосфата - соединения, состоящего из 15 углеродных атомов. Две молекулы фарнезилпирофосфата конденсируются с образованием сквалена - углеводорода линейной структуры, состоящего из 30 углеродных атомов.

3 этап - Образование холестерола

На третьем этапе синтеза холестерола сквален через стадию образования эпоксида ферментом циклазой превращается в молекулу ланостерола, содержащую 4 конденсированных цикла и 30 атомов углерода. Далее происходит 20 последовательных реакций, превращающих ланостерол в холестерол. На последних этапах синтеза от ланостерола отделяется 3 атома углерода, поэтому холестерол содержит 27 углеродных атомов.

Биологическая роль холестерина. Пути использования холестерина в различных тканях. Биосинтез желчных кислот.

Часть холестеринового фонда в организме постоянно окисляется, преобразуясь в различного рода стероидные соединения. Основной путь окисления холестерина - образование желчных кислот. На эти цели уходит от 60 до 80% ежедневно образующегося в организме холестерина. Второй путь - образование стероидных гормонов (половые гормоны, гормоны коры надпочечников и др.). На эти цели уходит всего 2-4% холестерина, образующегося в организме. Третий путь - образование в коже витамина ДЗ под действием ультрафиолетовых лучей.

Еще одним производным холестерина является холестанол. Его роль в организме пока еще не выяснена. Известно лишь, что он активно накапливается в надпочечниках и составляет 16% от всех находящихся там стероидов. С мочой у человека выделяется около 1 мг холестерина в сутки, а со слущивающимся эпителием кожи теряется до 100 мг/сут.

Желчные кислоты являются основным компонентом билиарной секреции, они образуются только в печени. Синтезируются в печени из холестерина.

В организме синтезируется за сутки 200-600 мг желчных кислот. Первая реакция синтеза-образование 7-альфа-гидроксихолестерола-является регуляторной.Фермент-7-альфа-гидроксилаза,ингибируется конечным продуктом-желчными кислотами.7-альфа-гидроксилаза представляет собой одну из форм цитохрома п450 и использует атом кислорода как один из субстратов. Один атом кислорода из О2 включается в гидроксильную группу в 7 положении, а другой восстанавливается до воды. Последующие реакции синтеза приводят к формированию 2 видов желчных кислот:холевой и хондезоксихолевой(первичные желчные кислоты)

Особенности обмена холестерина в организме человека. Роль липопротеинлипазы, печеночной липазы, липопротеинов, ЛХАТ, апопротеинов в транспорте холестерина в крови: альфа- и бета-холестерин, коэффициент атерогенности, АХАТ, накопление холестерина в тканях. Пути распада и выведения холестерина

В организме человека содержится 140-190 г холестерина и около 2 г образуется ежедневно из жиров,углеводов, белков. Чрезмерное поступление холестерина с пищей приводит к отложению его в сосудах и может способствовать развитию атеросклероза, а также нарушению функции печени и развитию желчно-каменной болезни. Ненасыщенные жирные кислоты (линолевая, линоленовая) затрудняют всасывание холестерина в кишечнике, тем самым способствуя уменьшению его содержания в организме. Насыщенные жирные кислоты (пальмитиновая, стеариновая) являются источником образования холестерина.

Липопротеинлипаза (ЛПЛ) - фермент, относящийся к классу липаз. ЛПЛ расщепляет триглицериды самых крупных по размеру и богатых липидами липопротеинов плазмы крови - хиломикронов и липопротеинов очень низкой плотности (ЛПОНП или ЛОНП)). ЛПЛ регулирует уровень липидов в крови, что определяет её важное значение в атеросклерозе.

Печёночная липаза - один из ферментов липидного метаболизма. Эта липаза по ферментативному действию похожа на панкреатическую липазу. Однако в отличие от панкреатической липазы ПЛ синтезируется в печени и секретируется в кровь. Печёночная липаза после секреции связывается со стенкой сосуда (почти исключительно в печени) и расщепляет липиды липопротеинов.

Печёночная липаза работает в кровотоке в тандеме с липопротеинлипазой. Липопротеинлипаза расщепляет липопротеины, богатые триглицеридами (липопротеины очень низкой плотности и хиломикроны), до их остатков. Остатки липопротеинов являются в свою очередь субстратом для печёночной липазы. Таким образом, в результате действия печёночной липазы образуются атерогенные липопротеины низкой плотности, которые поглощаются печенью.

(ЛВП) - Транспорт холестерина от периферийных тканей к печени

(ЛНП) - Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

ЛПП (ЛСП) - Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

(ЛОНП)-Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

Хиломикроны -Транспорт холестерина и жирных кислот, поступающих с пищей, из кишечника в периферические ткани и печень

Лецитинхолестеринацилтрансфераза (ЛХАТ)- является ферментом метаболизма липопротеинов. ЛХАТ связан с поверхностью липопротеинов высокой плотности, которые содержат аполипопротеин A1 - активатор этого фермента. Холестерин, превращённый в эфиры холестерина, благодаря высокой гидрофобности перемещается с поверхности липопротеина в ядро, освобождая место на поверхности частицы для захвата нового свободного холестерина. Таким образом, эта реакция является исключительно важной для процесса очищения периферических тканей от холестерина (обратный транспорт холестерина). Частица ЛПВП в результате увеличивается в диаметре или в случае насцентных ЛПВП превращается из дисковидной в сферическую.

Апопротеины формируют структуру липоппротеинов,взаимодействуют с рецепторами на поверхности клеток и таким образом определяют какими тканями будет захватываться данный тип липопротеидов, служат ферментами или активаторами ферментов, действующих на липопротеины.

АХАТ катализирует эстерификацию холестерола. Свободный холестерол выходит в цитоплазму, где ингибирует ГМГ-CoA-редуктазу и de novo синтез холестерола и активирует АХАТ. У человека, однако, из-за низкой активности АХАТ в печени холестерол поступает в плазму в составе ЛПОНП преимущественно в свободном виде.

Нарушение обмена холестерола и холестеридов проявляется прежде всего накоплением их в тканях (кумулятивные холестерозы), особенно в стенке артерий и в коже. Основной причиной накопления холестерола в тканях является недостаточность механизма его обратного транспорта. Ключевым фактором системы обратного транспорта холестерола (с периферии в печень, откуда его излишки удаляются из организма с желчью) являются липопротеины высокой плотности, точнее входящий в их состав белок апопротеин А. Частицы липопротеинов высокой плотности собирают холестерол не только в интерстициальном секторе, но и внутри клеток. У человека (а также высших обезьян и свиней) существует видовая (характерная для всех представителей вида) недостаточность апопротеина А и, соответственно, липопротеинов высокой плотности. Животные с высоким содержанием этих липопротеинов не страдают холестериновым диатезом, даже при постоянном употреблении богатой холестеролом пищи. Некоторые люди также отличаются довольно высокой концентрацией апопротеина А («синдром долголетия»).

Из организма человека ежедневно выводится около 1 г холестерола. Приблизительно половина этого количества экскретируется с фекалиями после превращения в желчные кислоты. Оставшаяся часть выводится в виде нейтральных стероидов. Большая часть холестерола, поступившего в желчь, реабсорбируется; считается, что по крайней мере часть холестерола, являющегося предшественником фекальных стеролов, поступает из слизистой оболочки кишечника. Основным фекальным стеролом является копростанол, который образуется из холестерола в нижнем отделе кишечник а под действием присутствующей в нем микрофлоры. Значительная доля солей желчных кислот, поступающих с желчью, всасывается в кишечнике и через воротную вену возвращается в печень, где снова поступает в желчь. Этот путь транспорта солей желчных кислот получил название кишечно-печеночной циркуляции. Оставшаяся часть солей желчных кислот, а также их производные выводятся с фекалиями. Под действием кишечных бактерий первичные желчные кислоты превращаются во вторичные.

Холестерин в организме человека бывает 2 видов: 1) холестерин , поступающий с пищей через ЖКТ и называемый экзогенный и 2) холестерин, синтезируемый из Ац - КоА - эндогенный.

С пищей ежедневно поступает 0,2 - 0,5 г, синтезируется 1 г (почти все клетки за исключением эритроцитов синтезируют холестерин, 80% холестерина синтезируется в печени.

Взаимоотношения экзо и эндогенного холестерина в определенной степени конкурентны - холестерин пищи ингибирует его синтез в печени.

Фонд холестерина, обнаруживаемого в ЖКТ состоит из 3-х частей: пищевого холестерина слизистой кишечника - может быть до 20% и холестерина желчи (холестерин желчи составляет в среднем 2,5 - 3,0г)

Всасывание холестерина происходит в основном в тощей кишке (пищевой холестерин всасывается почти полностью - если в пище его не очень много), холестерин желчи всасывается примерно на 50% - остальное экскретируется.

Всасывание холестерина осуществляется только после эмульгирования эфиров холестерина. Эмульгаторами являются желчные кислоты, моно- и диглицериды и лизолецитины. Холестериды гидролизуются холестеринэстеразой поджелудочной железы .

Пищевой и эндогенный холестерин находится в просвете кишечника в неэстерифицированной форме в составе сложных мицелл (желчные, жирные кислоты, лизолецитин), причем поступают в состав слизистой кишечника не вся мицелла целиком, а ее отдельные фракции. Сорбцил холестерина из мицелл - пассивный процесс, идущий по градиенту концентрации. Поступивший в клетки слизистой холестерин этерифицируется холестеринэстеразой или АХАТ (у человека это в основном олеиновая кислота). Из клеток слизистой кишечника холестерин поступает в лимфу в составе АОНП и ХМ, из них он переходит в ЛНП и ЛВП. В лимфе и крови 60-80% всего холестерина находится в этерифицированном виде.

Процесс всасывания холестерина из кишечника зависит от состава пищи: жиры и углеводы способствуют его всасыванию, растительные стероиды (структурные аналоги) блокируют этот процесс. Большое значение принадлежит желчным кислотам (все функции активируют - улучшают эмульгирование, всасывание). Отсюда значение лекарственных веществ, блокирующих всасывание желчных кислот.

Резкое повышение холестерина в пище (до 1,5 г ежедневно) может сопровождаться некоторой гиперхолестеринемией у здоровых людей.

Биосинтез холестерина

Клетки печени синтезируют 80% всего холестерина, примерно 10% холестерина синтезируется в слизистой кишечника. Холестерин синтезируется не только для себя, но и на «экспорт».

Митохондрии являются держателем субстрата для синтеза холестерина. Ацетил-КоА выходит в виде цитрата и ацетоацета.


Синтез холестерина идет в цитоплазме и включает 4 стадии.

1 стадия - образование мевалоновой кислоты :

2 стадия - образование сквалена (30 атом С)

Эта стадия (как и 1) начинается в водной фазе клетки, а заканчивается в мембране эндоплазматического ретикулума образованием водо-нерастворимого сквалена.

Затрачивается 6 молей мевалоновой кислоты, 18 АТФ, НАДФ НН с образованием цепочечной структуры из 30 С - сквалена.

3 стадия - циклизация сквалена в ланостерин.

4 стадия - превращение ланостерина в холестерин.

Холестерин - циклический ненасыщенный спирт. Содержит ядро циклопентан-пергидрофенантрена.

Регуляция биосинтеза холестерина

При высоком содержании холестерина, он угнетает активность фермента -гидрокси--метилурацил-КоА-редуктазы и синтез холестерина тормозится на стадии образования мевалоновой кислоты - это первая специфическая стадия синтеза. -гидрокси--метилурацил-КоА, не пошедший на синтез холестерина может пойти на синтез кетоновых тел. Это регуляция по типу обраьной отрицательной связи.

Транспорт холестерина

В плазме крови здоровых людей содержится 0,8 - 1,5 г/л ЛОНП, 3,2 - 4,5 г/л ЛНП и 1,3 - 4,2 г/л ЛВП.

Липидный компонент практически всех ЛП представлен наружной оболочкой, которая образована монослоем ФЛ и холестерина и внутренним гидрофобным ядром, состоящим из ТГ и холестеридов. Кроме липидов ЛП содержат белок - аполипопротеиды А, В или С. Свободный холестерин, находящийся на поверхности ЛП, легко обменивается между частицами: меченый холестерин, введенный в плазму в составе одной группы ЛП, быстро распределяется между всеми группами.

ХМ формируются в эпителиальных клетках кишечника, ЛОНП и ЛВП независимо друг от друга образуются в гепатоцитах.

ЛП обмениваются своим холестерином с мембранами клеток, особенно интенсивный обмен идет между ЛП и гепатоцитами, на поверхности которых есть рецепторы для ЛПНП. Процесс переноса холестерина в гепатоциты требует энергии.

Судьба холестерина в клетке

1. Связывание ЛНП с рецепторами фибробластов, гепатоцитов и др. клеток. На поверхности фибробласта содержится 7500 - 15000 рецепторов, чувствительных к холестерину. Рецепторы для ЛНП содержат эндотелиальные клетки, клетки надпочечников, яйцеклетки, разнообразные раковые клетки. Связывая ЛНП, клетки поддерживают определенный уровень этих ЛП в крови.

У всех обследованных здоровых людей интернализация ЛНП неизбежно сопровождается и связыванием с рецепторами клеток. Связывание и интернализация ЛНП обеспечивается одним и тем же белком, входящим в состав рецепторов ЛНП. В фибробластах больных с семейной гиперхолестеринемией, дефицитных по рецепторам ЛНП интернализация их редко угнетается.

2. ЛНП с рецептором подвергается эндоцитозу и включается в лизосомы. Там ЛНП (аполипопротеиды, холестериды) распадаются. Хлороквин - ингибитор лизосомального гидролиза подавляет эти процессы.

3. Появление в клетках свободного холестерина ингибирует ОМГ-КоА-редуктазу снижает эндогенный синтез холестерина. При концентрации ЛНП > 50 мкг/мл синтез холестерина в фибробластах подавляется полностью. Инкубация лимфоцитов 2-3 мин с сывороткой, освобожденной от ЛНП, увеличивает скорость синтеза холестерина в 5-15 раз. При добавлении ЛНП к лимфоцитам синтез холестерина замедляется. У больных с гомозиготной семейной гиперхолестеринемией снижения синтеза холестерина в клетках не происходит.

4. В клетках, способных превращать холестерин в другие стероиды ЛНП стимулирует синтез этих стероидов. Например, в клетках коры надпочечников 75% прегненалона образуется из холестерина, поступающего в составе ЛНП.

5. Свободный холестерин увеличивает активность ацетил-КоА- олестерилацилтрансферазы (АХАТ), приводя к ускоренной реэтерификации холестерина с образованием в основном олеата. Последний иногда накапливается в клетках в виде включений. Вероятно биологический смысл этого процесса заключается в борьбе с накоплением свободного холестерина.

6. Свободный холестерин снижает биосинтез рецептора ЛНП, который тормозит захват ЛНП клеткой и тем самым защищает ее от перегрузки холестерином.

7. Накопленный холестерин проникает в фосфолипидный бислой цитоплазматической мембраны. Из мембраны холестерин может перейти в ЛВП, циркулирующие с кровью.

Превращение холестерина в организме

То внимание, которое ранее уделяли метаболизму холестерина при обсуждении его роли в организме явно преувеличено. На первое место в настоящее время выдвинута структурная роль холестерина в биомембранах.

Внутриклеточно переносится в основном свободный холестерин. Эфиры холестерина внутриклеточно переносятся с очень низкой скоростью только с помощью специальных белков переносчиков или вообще не переносятся.

Эстерификация холестерина

Повышает неполярность молекулы. Этот процесс происходит как вне так и внутриклеточно, он всегда направлен на то, чтобы убрать молекулы холестерина с границы раздела липид / вода вглубь липопротеидной частицы. Таким путем происходит транспортирование или активация холестерина.

Внеклеточная эстерификация холестерина катализируется ферментом лецитинхолестеринацетилтрансферазой (ЛХАТ).

Лецитин + холестерин лизолецин + холестерид

В основном переносится линолевая кислота. Ферментативная активность ЛХАТ связана преимущественно с ЛВП. Активатором ЛХАТ является апо-А-I. Образующийся в результате реакции эфир холестерина погружается внутрь ЛВП. При этом концентрация свободного холестерина на поверхности ЛВП снижается и таким образом поверхность подготавливается для поступления новой порции свободного холестерина, который ЛВП способен снимать с поверхности плазматической мембраны клеток в том числе и эритроцитов. Таким образом ЛВП совместно с ЛХАТ функционирует как своеобразная «ловушка» холестерина.

Из ЛВП эфиры холестерина переносятся в ЛОНП, а из последних в ЛНП. ЛНП синтезируются в печени и там же катаболизируют. ЛВП приносят холестерин в виде эфиров в печень, а из печени удаляются в виде желчных кислот. У больных с наследственным дефектом ЛХАТ в плазме много свободного холестерина. У больных с поражением печени, как правило, наблюдается низкая активность ЛХАТ и высокий уровень свободного холестерина в плазме крови.

Таким образом, ЛВП и ЛХАТ представляют собой единую систему транспорта холестерина от плазматических мембран клеток различных органов в виде его эфиров в печень.

Внутриклеточно холестерин эстерифицируется в реакции катализируемой ацил-КоА-холестеринацетилтрансферазой (АХАТ).

Ацил-КоА + холестерин холестрид + HSKoA

Обогащение мембран холестерином активирует АХАТ.

В результате этого ускорение поступления или синтеза холестерина сопровождается ускорением его эстерификации. У человека в эстерификации холестерина чаще всего участвует линолевая кислота.

Эстерификацию холестерина в клетке следует рассматривать как реакция сопровождающуюся накоплением в ней стероида. В печени эфиры холестерина после гидролиза используются для синтеза желчных кислот, а в надпочечниках - стероидных гормонов.

Т.о. ЛХАТ разгружает от холестерина плазматические мембраны, а АХАТ - внутриклеточные. Эти ферменты не удаляют холестерин из клеток организма, а переводят его из одной формы в другую, поэтому роль ферментов эстерификации и гидролиза эфиров холестерина в развитии патологических процессов не следует преувеличивать.

Окисление холестерина.

Единственным процессом, необратимо удаляющим холестерин из мембран и ЛП является окисление. Оксигеназные системы обнаружены в гепатоцитах и клетках органов, синтезирующих стероидные гормоны (кора надпочечников, семенники, яичники, плацента).

Существуют 2 пути окислительного превращения холестерина в организме: один из них приводит к образованию желчных кислот, а другой к биосинтезу стероидных гормонов.

На образование желчных кислот расходуется 60-80% всего ежедневно образующегося холестерина, к то время как на стероидогенез - 2-4%.

Окислительное превращение холестерина в обеих реакциях протекает по многоступенчатому пути и осуществляется ферментной системой, содержащей различные изоформы цитохрома Р 450 . Характерной чертой окислительных превращений холестерина в организме является то, что его циклопентанпергидрофенантреновое кольцо не расщепляется и выводится из организма в неизменном виде. В противоположность этому боковая цепь легко отщепляется и метаболизирует.

Окисление холестерина в желчные кислоты служит основным путем выведения этой гидрофобной молекулы. Реакция окисления холестерина является частным случаем окисления гидрофобных соединений, т.е. процесса лежащего в основе детоксифицирующей функции печени.

Неполярная молекула в пространстве мембраны

окисление в монооксидазных системах печени и других органов

Полярная молекула в водном пространстве

Этерификация конъюгация связанные белки

Экскреторные органы

Моноокисдазная система.

Содержит цитохром Р 450 способный активировать молекулярный кислород (при участии НАДФН) и использует один из его атомов для окисления органических веществ, а второй для образования воды.

С 27 Н 45 ОН + НАДФН + Н + + О 2 С 27 Н 44 (ОН) 2 + НАДФ + Н 2 О

Лимитирующим является первый этап реакции (гидроксилирования в положении 7).

В печени из холестерина синтезируются первичные желчные кислоты (путь окисления холестерина). В просвете кишечника из них образуются вторичные желчные кислоты (под влиянием ферментативных систем микроорганизмов).

Первичными желчными кислотами являются холевая и дезоксихолевая. Здесь же они эстерифицируются глицином или таурином, превращаются в соответствующие соли и в таком виде секретируются в желчь.

Вторичные желчные кислоты возвращаются в печень. Этот цикл называется энтерогепатической циркуляцией желчных кислот обычно каждая молекула совершает в сутки 8-10 оборотов.

Уменьшение поступления желчных кислот в печень в результате дренирования желчного кровотока или применения ионообменных смол стимулирует биосинтез желчных кислот и 7- гидроксилазу. Введение в диету желчных кислот, наоборот, угнетает желчегенез и ингибирует активность фермента.

Под действием холестериновой диеты желчегенез у собак увеличивается в 3 - 5 раз, у кроликов и морских свинок такого увеличения не наблюдается. У больных атеросклерозом отмечено снижение скорости окисления холестерина печени. Вероятно это снижение является патологическим звеном развития атеросклероза.

Другой путь окисления холестерина приводит к образованию стероидных гормонов несмотря на то, что в количественном отношении он составляет всего несколько процентов обменивающегося холестерина. Это очень важный путь его использования. Холестерин является основным предшественником всех стероидных гормонов в надпочечниках, яичниках, семенниках и плаценте.

Цепь биосинтеза включает множество гидроксилазных реакций, катализируемых изоформами цитохрома Р 450 . Скорость процесса лимитируется его первой реакцией расщепления боковой цепи. Несмотря на, небольшой количественный вклад стероидогенеза в валовое окисление холестерина угнетение этого процесса в пожилом возрасте длящемся долгие годы может постепенно приводить к накоплению холестерина в организме и развитию атеросклероза.

В коже из дегидрированного холестерина под действием УФ-лучей образуется витамин D 3 , затем он транспортируется в печень.

В неизменном виде холестерин секретируется желчью. В желчи его содержание доходит до 4 г/л. Холестерин желчи это 1/3 холестерина кала, 2/3 его составляет не всосавшийся холестерин пищи.

Метаболизм кетоновых тел.

Ацетил-КоА, образовавшийся при окислении жирных кислот, сгорает в цикле Кребса или используется для синтеза кетоновых тел. К кетоновым телам относятся: ацетоацетат, -окусибутират, ацетон.

Кетоновые тела синтезируются в печени из ацетил-КоА.

Холестерин в патологии.

I. Холестериноз - изменения содержания холестерина в организме.

1. Не осложненный холестериноз - (физиологическое старение, старость, естественная смерть) проявляется накоплением холестерина в плазматических мембранах клеток в связи с уменьшением синтеза стероидных гормонов (стероидогенеза).

2. Осложненный - атеросклероз в форме ишемической болезни сердца (инфаркт миокарда), ишемия мозга (инсульт, тромбоз), ишемия конечностей, ишемии органов и тканей, связанный с уменьшением желчегенеза.

II. Изменения содержания холестерина в плазме крови.

1. Семейная гиперхолестеринэмия - обусловлена дефектом рецепторов для ЛНП. В результате холестерин не поступает в клетки и накапливается в крови. Рецепторы по химической природе являются белками. В результате развивается ранний атеросклероз.

III. Накопление холестерина в отдельных органах и тканях.

Болезнь Вольмана - первичный семейный ксантоматоз - накопление эфиров холестерина и триглицеридов во всех органах и тканях, причина дефицит лизосомальной холестеринэстеразы. Ранняя смерть.

Семейная гиперхолестенинэмия или -липопротеинэмия. Нарушается поглощение ЛНП клетками, повышается концентрация ЛНП, а также холестерина. При -липопротеинэмии наблюдается отложение холестерина в тканях, в частности в коже (ксантомы) и в стенках артерий. Отложение холестерина в стенках артерий главное биохимическое проявление атеросклероза.

Вероятность заболевания атеросклерозом тем выше, чем больше отношение концентраций ЛНП и ЛВП в крови (ЛНП снабжает клетки холестерином, ЛВП удаляет из них избыток холестерина). Холестерин образует в стенках сосудов бляшки. Бляшки могут изъязвляться и язвы зарастают соединительной тканью (образуется рубец), в которую откладываются соли кальция. Стенки сосудов деформируются, становятся жесткими, нарушается моторика сосудов, суживается просвет вплоть до закупорки.

Гиперхолестеринемия - главная причина отложения холестерина в артериях. Но важное значение имеют также первичные повреждения стенок сосудов. Повреждения эндотелия могут возникать в следствие гипертонии, воспалительных процессов.

В области повреждения эндотелия в стенку сосудов проникают компоненты крови, в том числе липопротеиды, которые поглощаются макрофагами. Мышечные клетки сосудов начинают размножаться и тоже фагоцитировать липопротеиды. Ферменты лизосом разрушают липопротеиды, кроме холестерина. Холестерин накапливается в клетке, клетка гибнет, а холестерин оказывается в межклеточном пространстве и инкапсулируется соединительной тканью - образуется атеросклеротическая бляшка.

Между отложением холестерина в артериях и липопротеидами крови происходит обмен, но при гиперхолестеринемии преобладает поток холестерина в стенки сосудов.

Методы профилактики и лечения атеросклероза направлены на уменьшение гиперхолестеринемии. Для этого применяют малохолестериновую диету, лекарства увеличивающие эксткрецию холестерина или ингибирующие его синтез, прямое удаление холестерина из крови методом гемодиффузии.

Холестирамин связывает желчные кислоты и исключает их из кишечно-печеночного кровобращения, что приводит к усилению окисления холестерина в желчные кислоты.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.