Структура бактериальной клетки. Лабораторная диагностика подвижности бактерий Пили у бактерий служат для

Пили представляют собой внеклеточные белковые структуры, которые осуществляют самые разнообразные функции, включая обмен ДНК адгезию и образование биофильма клетками прокариот

Многие адгезивные пили собираются с участием системы шаперон-Usher-белок. Сборка происходит на наружной мембране с участием Usher-белка, образующего пору, сквозь которую проходят субъединицы пили, и шаперона периплазмы, способствующего их скручиванию и прохождению через пору

Жгутики представляют собой внешние структуры клетки, которые служат пропеллерами, обеспечивающими ее движение

У прокариот жгутики состоят из множественных сегментов, каждый из которых образуется при сборке белковых субъединиц

От поверхности прокариотической клетки отходят два типа придаточных структур, пили и жгутики . Пили представляют собой нитевидные олигомеры белков, присутствующие на клеточной поверхности. Существуют различные типы пилей. Например, F-пили участвуют в клеточной конъюгации и в переносе ДНК. Когда эти придаточные структуры были впервые обнаружены, их назвали «фимбрии» (лат. fimbria - нить, волокно). Их присутствие коррелировало со способностью Е. coli агглютинировать красные кровяные клетки.

Позже для обозначения фибриллярных структур (F-пили ), связанных с процессом переноса генетического материала между организмами при конъюгации, был предложен термин пили (или пилюс) (лат. pilus - волос). С тех пор этот термин стал общим для описания всех типов ворсинчатых придаточных структур, и используется наряду с термином фимбрия.

Взаимодействие клеток бактерий с другими прокариотическими и эукариотическими клетками с участием ворсинок часто служит важным этапом заселения эпителия, проникновения микробов в клетки хозяина, обмена ДНК и формирования биопленок. Пили могут служить рецепторами бактериофагов. Основная функция большинства пилей состоит в структурном обеспечении позиционирования специфических молекул, участвующих в клеточной адгезии. Адгезивные субъединицы ворсинок (адгезины) представляют собой минорные компоненты их кончиков, однако основные структурные субъединицы также могут функционировать в качестве адгезинов.

Часто адгезивные пили представляют собой важные факторы заселения микробами организма хозяина. Например, при инфекциях мочевых путей патогенными бактериями Е. coli, клетки прикрепляются к эпителию мочевого пузыря с помощью пилей типа I. Пили этого типа присутствуют у многих грамотрицательных микроорганизмов. Они представляют собой сложные структуры, состоящие из толстого тела, соединенного с тонким фибриллярным концом. На конце расположены молекулы адгезина FimH, которые связываются с остатками маннозы на поверхности клеток хозяина.

Два типа пили у клеток прокариот.
Р-пили короче, чем F-пили, и принимают участие в адгезии клеток.
F-пили участвуют в конъюгации и в переносе ДНК между клетками.
Фотографии любезно предоставлены Мэтт Чэпмен (слева) и Роном Скарри (справа), биологический факультет Сиднейский университет.

Сборка пилей представляет собой сложный процесс, в котором участвуют структурные белки, составляющие тело пили, и дополнительные белки, способствующие сборке субъединиц на поверхности клетки. Все структурные компоненты, необходимые для процесса сборки пилей на поверхности грамотрицательных микроорганизмов, должны транслоцироваться через цитоплазматическую мембрану в периплазму и далее, через внешнюю мембрану. В завершении процесса сборки участвуют два специфических белка: шаперон, присутствующий в периплазме, и транспортный белок внешней мембраны, который называется Usher-белок.

Процессы, в которых функционируют эти белки, обеспечивают биогенез более 30 различных типов ворсинчатых структур. Как показано на рисунке ниже, комплексы шаперонов с субъединицами образуются в периплазме и на наружной мембране взаимодействуют с Usher-белком, где высвобождается шаперон. При этом на субъединицах открываются интерактивные поверхности, что обеспечивает их дальнейшую сборку в пили. Исследования пилей типа I и Р показали, что адгезин-шапероновые комплексы (PapDG или FimCH) обладают большим сродством к Usher-белку, и адгезины представляют собой начальные субъединицы, которые собираются в пили.

Включение остальных субъединиц отчасти определяется кинетикой образования на Usher-белке комплекса с шапероном. Наряду с функционированием в качестве сборочной платформы, Usher-белок, вероятно, играет также и другие роли в сборке ворсинок. По данным электронной микросокопии высокого разрешения, PapС Usher имеет вид кольцевых комплексов диаметром 15 нм, которые в середине имеют пору размером 2 нм. После отщепления от шаперона, которое происходит на Usher-белке, субъединицы включаются в растущую структуру пили, которая, как считают, должна выталкиваться через центральную пору комплекса в виде толстой линейной фибриллы, состоящей из одной субъединицы.

Большинство микроорганизмов обладает подвижностью, и часто она обеспечивается длинными структурными придатками, которые называются жгутиками. У грамположительных и грамотрицательных бактерий жгутики собираются на поверхности клеток. Когда на полюсе клетки находится один жгутик, такое расположение называется монотрихиальным (или полярным). Если жгутики расположены вокруг клетки, то такое расположение называется перитрихиальным.

Если на одном полюсе клетки находится группа жгутиков, то говорят об их лофотрихиальном расположении (от латинского «хохолок»). бактерий отличаются от этих структур эукариотических клеток, которые состоят из микротрубочек и связанных с ними белков и окружены плазматической мембраной.

Жгутики могут быть различной длины, но их диаметр обычно составляет 20 нм. Они не видны в световом микроскопе, если препараты вначале не обрабатывались реагентами, которые увеличивали диаметр жгутиков. На рисунке ниже видно, что жгутики состоят из трех отдельных доменов: филамента, крючка и базального тела. Филамент жгутика состоит из повторяющихся структур флагеллиновых белков. Флагеллины представляют собой высококонсервативные белки бактерий, что позволяет предполагать, что движение клеток с участием жгутиков характерно для примитивных форм живых организмов. В месте присоединения жгутика к клетке находится базальное тело, представляющее собой сложную структуру, состоящую из множества белков.

Филамент жгутика соединяется с базальным телом посредством крючка. У грамотрицательных бактерий базальное тело проходит через наружную мембрану, протеогликан клеточной стенки и цитоплазматическую мембрану. С наружной мембраной жгутик связан посредством L-кольца. Две пары колец, S-М и Р, способствуют прикреплению жгутика к цитоплазматической мембране и к клеточной стенке соответственно. Каждое кольцо состоит из множества мембранных белков. На цитоплазматической мембране находятся два белка Mot, которые выполняют роль моторов, приводящих жгутики в движение. Еще один набор белков встроен в цитоплазматическую мембрану и выполняет реверсную функцию по отношению к моторам жгутика. Поскольку у грамположительных организмов наружная мембрана отсутствует, у них есть только S-М кольца.

В образовании и сборке филаментов жгутиков участвует несколько десятков различных генов. Их активность строго регулируется в соответствии с порядком процесса сборки. Так, первыми экспрессируются гены, участвующие в сборке базального тела и крючка, а затем наступает очередь генов, ответственных за образование субъединиц жгутика. Экспрессии флагеллиновых субъединиц не происходит до тех пор, пока не завершилась сборка крючка. В этот момент через канал крючка выходит супрессор транскрипции, и, таким образом, снимается подавление экспрессии флагеллина. Субъединицы флагеллина экспортируются через жгутик и добавляются к его растущему концу.

Такой механизм обеспечивает сборку филамента только после образования структуры крючка. Эта структура также имеет отношение к другим секреторным системам белков.

Система хемотаксиса определяет наличие питательных компонентов и затем определяет направление вращения жгутика. В отсутствие питательных компонентов, жгутики вращаются по часовой стрелке, что вызывает поворот клетки. Движение клетки по направлению к молекулам химического соединения или от них называется хемотаксис. В данном разделе мы рассмотрим движение прокариотической клетки в присутствии аттрактанта, являющегося питательным продуктом.

Для того чтобы обеспечить клетке такое движение, жесткий жгутик должен вращаться подобно пропеллеру, за счет энергии, доставляемой протонной движущей силой. Движение клетки состоит из серии прямых пробегов, за которыми следуют ее быстрые беспорядочные повороты. Когда жгутики вращаются против часовой стрелки, клетка перемещается по прямой линии, а при вращении по часовой стрелке клетка совершает повороты. Поскольку в результате поворотов клетка занимает случайные позиции, можно было бы думать, что общий итог движения окажется нулевым. Однако периодичность пробегов регулируется в соответствии с доступностью питательного компонента: более длинные пробеги характерны для движения клетки по направлению к источнику питания, и количество поворотов возрастает, когда клетка направляется от него.

Хотя направление отдельных пробегов все еще случайно, общий результат проявляется в движении клетки в сторону аттрактанта.

Пути передачи сигнала хемотаксиса у прокариот характеризуются чрезвычайно консервативной природой. Единственным из известных организмов, в геноме которого отсутствуют гены хемотаксиса, является Mycoplasma. Практически у всех прокариот обнаружены следующие консервативные белки хемотаксиса: CheR, CheA, CheY, CheW, и CheB. При протекании сложного каскада событий, включающих фосфорилирование и метилирование, эти белки обеспечивают сложный, скоординированный и высокогибкий ответ клетки на присутствие аттрактантов и репеллентов в окружающей среде. Мы опишем, как происходят эти события в клетках Е. coli.

Присутствующие в окружающей среде аттрактанты или репелленты связываются с рецепторами, расположенными на цитоплазматической мембране. С этими рецепторами взаимодействует киназа CheA, также расположенная в цитоплазматической мембране. Эта киназа фосфорилирует CheY, который затем связывается с мотором жгутика, что приводит к переключению направления его вращения и к повороту клетки. Под действием фосфатазы CheZ из CheY удаляется фосфатная группа. При низкой концентрации аттрактанта происходит аутофосфорилирование CheA, фосфатная группа переносится на CheY, и последний мигрирует к мотору жгутика, изменяя характер движения клетки на поворот.

Система хемотаксиса характеризуется еще одним уровнем сложности, который позволяет клетке постоянно адаптироваться к условиям, существующим в окружающей среде. По мере своего продвижения по градиенту концентрации химических соединений, клетка может реагировать на возникающие небольшие флук-туации. Такая кратковременная память обеспечивается за счет метилирования мембранных рецепторов. CheR метилирует мембранные рецепторы, a CheB удаляет метальные группы.

Оглавление темы "Анатомия бактериальной клетки. Физиология бактерий.":
1. Анатомия бактериальной клетки. Поверхностные структуры бактерии. Капсула бактерий. Организация капсул. Окраска капсул бактерий. Состав капсул. Антигенные свойства капсул.
2. Жгутики бактерий. Расположение жгутиков. Перитрихи. Монотрихи. Политрихи. Лофотрихи. Амфитрихи. Феномен роения. Диагностика подвижности бактерий.

4. Клеточная стенка бактерий. Функции клеточной стенки. Строение клеточной стенки бактерии. Пептидогликан. Муреиновый мешок. Структура пептидогликана (муреина)
5. Грамотрицательные бактерии. Клеточная стенка грамотрицательных бактерий. Строение клеточной стенки грамотрицательных бактерий.
6. Грамположительные бактерии. Клеточная стенка грамположительных бактерий. Строение клеточной стенки грамположительных бактерий. Аутолизины бактерий. Сферопласты. Протопласты.
7. Цитоплазматическая мембрана (ЦПМ) бактерии. Состав цитоплазматической мембраны бактерий. Транспортные системы. Мезосомы. Периплазматическое пространство.
8. Цитоплазма бактерий. Бактериальный геном. Бактериальные рибосомы. Запасные гранулы бактерии.
9. Физиология бактерий. Питание бактерий. Тип питания бактерии. Голозои. Голофиты. Вода. Значимость воды для бактерий.
10. Усваиваемые бактериальной клеткой соединения. Пути поступления веществ в бактериальную клетку. Пассивный перенос. Диффузия.

Помимо жгутиков , поверхность многих бактерий покрыта цитоплазматическими выростами - микроворсинками . Обычно это волоски (числом от 10 до нескольких тысяч) толщиной 3-25 нм и длиной до 12 мкм. Микроворсинки встречают как у подвижных, так и у неподвижных бактерий. Эти выросты способствуют увеличению площади поверхности бактериальной клетки, что дает ей дополнительные преимущества в утилизации питательных веществ из окружающей среды. Известны специализированные микроворсинки - фимбрии и пили .

Фимбрии бактерий [от лат. fimbria, бахрома]. Многие грамотрицательные бактерии имеют длинные и тонкие микроворсинки, пронизывающие клеточную стенку. Образующие их белки формируют спиралевидную нить. Основная функция фимбрии - прикрепление бактерий к субстратам (например, к поверхности слизистых оболочек), что делает их важным фактором колонизации и патогенности.

F-пили бактерий [от англ. fertility, плодовитость, + лат. pilus, волосок], или «секс-пили », - жёсткие цилиндрические образования, участвующие в конъюгации бактерий. Пили впервые обнаружены у Escherichia coli K12, то есть у штаммов, содержащих F-фактор (см. тему «Плазмиды»). Обычно клетка снабжена 1-2 пилями, имеющими вид полых белковых трубочек длиной 0,5-10 мкм; нередко они имеют шаровидное утолщение на конце. Большинство F-пилей образует специфический белок - пилин . Образование пилей кодируют плазмиды. Их идентифицируют с помощью донорспецифических бактериофагов, адсорбирующихся на пилях и лизирующих клетки.

Клеточная оболочка бактерий

У большинства бактерий клеточная оболочка состоит из клеточной стенки и находящейся под ней ЦПМ. С долей условности клеточную оболочку можно назвать живой кожей бактерий в противоположность мёртвому веществу капсулы. Клеточную оболочку можно сравнить с тонкой и эластичной, но в то же время прочной покрышкой футбольного мяча. Как мячу придаёт упругость хорошо накачанная футбольная камера, так и клеточной стенке бактерий дополнительную упругость придаёт внутреннее (тургорное) давление цитоплазмы, способное достигать у грамположительных бактерий 30 атм. Некоторые бактерии в качестве наружного слоя клеточной стенки дополнительно имеют внешнюю мембрану-гликокаликс .

Гликокаликс [от греч. gfykys, сладкий, + kalyx, раковина] образован переплетением полисахаридных волокон (декстраны и леваны). Его не обнаруживают при выращивании на искусственных питательных средах. Основная функция гликокаликс а - адгезия к различным субстратам. Например, благодаря гликокаликс у Streptococcus mutatis способен прочно прикрепляться к зубной эмали.


Наряду со жгутиками прокариоты могут обладать и другими внеклеточными образованиями. В середине ХХ века было установлено, что бактерии способны формировать специфическую группу поверхностных образований. Их называли ворсинками, ресничками, фимбриями. Сегодня их называют пилями бактерий.

Внешне пили, или фимбрии, как их называли до 1956 г., выглядят как микроскопические волоски, покрывающие клетку бактерии. На 1 клетку прокариота может приходиться от нескольких единиц до тысяч ворсинок.

Хотя они, как и жгутики, являются поверхностными образованиями, однако между собой имеют больше различий, чем сходств.

По размеру пили намного меньше жгутиков, в среднем в 3 раза тоньше (не более 10 нм), и длиной не превышают 1,5 мкм.

По строению, несмотря на то, что как пили, так и жгутики состоят из белковых клеток, они также различаются:

  • пили, или фимбрии, представляют собой легкую цепочку проводящих белков цилиндрической формы, отходящую от поверхностного слоя клетки;
  • жгутики являются более громоздкими по строению, с наличием сложных структур (стержень, базальное тело, кольца и другое).

Столь явное различие в строении поверхностных образований прокариотов связано с совершенно разными задачами, которые они решают в процессе жизнедеятельности бактериальной клетки.

Для чего прокариотам пили

К примеру, если жгутики бактерий обеспечивают возможность передвигаться, то фимбрии не имеют никакого отношения к перемещению в пространстве и присутствуют как у движущихся, так и у неподвижных бактерий.

В отличие от жгутиков функции пилей бактерий изучены достаточно слабо, но совершенно очевидно, что одной из них является способность обеспечить прикрепление клетки бактерии к питательному субстрату.

Разные типы ворсинок

Пили не являются однородными образованиями, их различают как минимум 4 типа, каждый из которых выполняет свои функции, причем одна клетка может являться носителем несколько разных типов фимбрий.

Пили 1 типа

Фимбрии бактерий 1 типа образуются из пилина (белок) и отличаются крайне прочной связью с прокариотом. Чтобы отделить такую фимбрию от бактериальной клетки, требуются усилия, многократно превышающие необходимое воздействие для отделения половых пилей или жгутиков.

Для пилей 1 типа характерно расположение перитрихиально – по всей поверхности бактерии.

Исследования методами выявления свойств показали, что пили 1 типа являются химически устойчивыми образованиями – они инертны к растворам щелочей, мочевине и трипсину (фермент, расщепляющий белки).

Разрушаются пили 1 типа при кипячении в растворах с высокой кислотностью, при этом методе воздействия происходит необратимое разрушение (денатурация) белка, образующего фимбрию.

Характерной особенностью пилей 1 типа является:

  • способность образовывать пленки и придавать бактериям гидрофобные свойства;
  • способность вызывать агглютинацию эритроцитов (выпадение в осадок в результате склеивания) под действием агглютининов.

Органоиды бактерий

Основными функциями являются:

  • адгезивная – прикрепление бактерий к субстратам;
  • защитная – объединение клеток прокариотов, получивших гидрофобные свойства, в группы;
  • участие в процессах метаболизма клетки – увеличение всасывающей поверхности.

Ворсинки 2 типа

Эта группа имеет очень много общего с предыдущей, однако не обладает характерными особенностями 1 типа – пили не участвуют в формировании пленок и не приклеиваются к эритроцитам (агглютинация), провоцируя выпадение их в осадок.

Столь близкое сходство позволяет предположить, что пили 2 типа являются мутантной формой 1 типа.

Половые фимбрии (3 тип)

Современные методы выявления позволили определить, что при горизонтальном переносе генетического материала (конъюгации) ключевую роль играют половые пили.

Возможность непосредственного контакта двух бактериальных клеток с последующей конъюгацией была выявлена в 50-х годах прошлого века в результате исследований двух американских биохимиков – Д.Ледербейга и Э.Тейтема. Данный процесс имеет большое практическое значение, так как позволяет производить обмен наследственными признаками организмам, размножающимся только прямым делением.

Половые фимбрии, их называют F-пили, присутствуют только у бактериальных штаммов, обладающих фактором трансмиссивности – это может быть автономный репликон или его часть.

F-пили представляют собой цилиндрические белковые образования большего диаметра, чем пили 1 или 2 типа, расположенные перпендикулярно к поверхности.

Формирование пиля осуществляется на поверхности цитоплазматической мембраны в точках контакта ее с вешней оболочкой. Сформированная трубочка проходит сквозь слои муреина и внешнюю мембрану.

В случае потери F-пили восстанавливаются – в течение 30 секунд пиль достигает половины своей величины. Для формирования полноценной трубочки необходимо от 4 до 5 минут.

Современные методы выявления позволили определить, что на поверхности бактерии F-пили сохраняются в течение 5 минут, после чего сбрасываются, и процесс повторяется.

F-пили значительно отличаются от ворсинок 1 и 2 типа как по строению, так и по свойствам.

В отличие от последних F-пили легко отделяются от бактериальной клетки даже при незначительном встряхивании.

Методами физико-химического анализа было определено, что в составе F-пили отсутствует целый ряд α-аминокислот, характерных для белка пилей 1 типа, но через ковалентную связь присоединены остаток D-глюкозы и две фосфатные группы.

В связи с иной химической структурой на F-пили не адсорбируются обычные фаги, а только специфичные для них, называемые мужскими фагами.

Участие F-пили в процессе передачи информации

Процесс передачи части генетической информации подразумевает наличие пары клетка-донор и клетка-реципиент.

  1. Первоначально клетка-донор формирует F-пиль.
  2. F-пиль донора фиксируется на клетке-реципиенте.
  3. В F-плазмиде донорной клетки осуществляется разрыв одной нити ДНК, которая передается реципиенту.
  4. Обе бактерии достраивают вторую цепочку ДНК и восстанавливают F- плазмиду. Клетка-реципиент превращается в донора.

Микроскопические методы исследований позволили определить, что образование F-пилей характерно только для растущих и активных клеток, при переходе в стационарную фазу роста бактерии теряют свою способность образовывать половые пили и становятся плохими донорами.

Специфическая направленность фимбрий 4 типа

Пили 4 типа принимают участие в обеспечении разновидности скользящего движения бактерий всей колонией.

Сам процесс скольжения с участием пилей 4 группы предполагает наличие 2 систем движения:

  • А-система — секретирует слизь на полюсе направления движения микроорганизма.
  • S-система – роение; обеспечивается последовательным сокращением и удлинением пилей 4 типа, подобное подтягиванию.

Механизм данного вида бактериального движения на сегодняшний день находится в процессе изучения, и большинство выводов носят предположительный характер.

У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли, поддержание которых может осуществляться разными путями. В зародышевых, эмбриональных тканях, особенно на ранних стадиях развития, клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, сцепления) клеток может определяться свойствами их поверхности, которые специфически взаимодействуют друг с другом. Механизм этих связей достаточно хорошо изучен, он обеспечивается взаимодействием между гликопротеидами плазматических мембран.

Кроме сравнительно простых адгезивных (но специфических) связей существует целый ряд специальных межклеточных структур, контактов или соединений, которые выполняют определенные функции.

Запирающее или плотное соединение характерно для однослойных эпителиев (Рис.9). Это зона, где внешние слои двух плазматических мембран максимально сближены. Часто видна трехслойность мембраны в этом контакте: два внешних осмофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2-3 нм.

Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран. Такие структуры при специальных окрасках можно видеть и в световом микроскопе. Они получили у морфологов название замыкающих пластинок . Роль замыкающего плотного контакта заключается не только в механическом соединении клеток друг с другом. Эта область контакта плохо проницаема для макромолекул и ионов, и тем самым она запирает, перегораживает межклеточные полости, изолируя их (и вместе с ними собственно внутреннюю среду организма) от внешней средыданном случае - просвет кишечника).

Замыкающий, или плотный, контакт встречается между всеми типами однослойного эпителия (эндотелий, мезотелий, эпендима).

Простой контакт , встречающийся среди большинства прилегающих друг к другу клеток различного происхождения (Рис.10). Большая часть поверхности контактирующих клеток эпителия также связана с помощью простого контакта, где плазматические мембраны, соприкасающихся клеток разделены пространством 15-20 нм. Это пространство представляет собой надмембранные компоненты клеточных поверхностей. Ширина щели между мембранами клеток может быть и больше 20 нм, образуя расширения, полости, но не меньше 10 нм.

Со стороны цитоплазмы к этой зоне плазматической мембраны не примыкают никакие специальные дополнительные структуры.

Зубчатый контакт («замок») представляет собой выпячивание поверхности плазматической мембраны одной клетки в инвагинат (впячивание) другой (Рис.11).

На срезе такой тип соединения напоминает плотничий шов. Межмембранное пространство и цитоплазма в зоне «замков» имеют те же характеристики, что и в зонах простого контакта. Такой тип межклеточных соединений характерен для многих эпителиев, где он соединяет клетки в единый пласт, способствуя, их механическому скреплению друг с другом.

Роль механического плотного скрепления клеток друг с другом играет ряд специальных структурированных межклеточных соединений.

Десмосомы , структуры в виде бляшек или кнопок также соединяют клетки друг с другом (Рис.12). В межклеточном пространстве здесь также виден плотный слой, представленный взаимодействующими интегральными мембранными кадгеринами - десмоглеинами, которые сцепляют клетки друг с другом.

С цитоплазматической стороны к плазмолемме прилежит слой белка-десмоплакина, с которым связаны промежуточные филаменты цитоскелета. Десмосомы встречаются чаще всего в эпителиях, в этом случае промежуточные филаменты содержат кератины. В сердечной мышце клетки, кардиомиоциты, содержат десминовые фибриллы в составе десмосом. В эндотелии сосудов в состав десмосом входят виментиновые промежуточные филаменты.

Полудесмосомы, в принципе, сходны по строению с десмосомой, но представляют собой соединение клеток с межклеточными структурами. Так в эпителиях линкерные гликопротеиды (интегрины) десмосомы взаимодействуют с белками т.н. базальной мембраны, куда входят коллаген, ламинин, протеогликаны и др.

Функциональная роль десмосом и полудесмосом сугубо механическая - они сцепляют клетки друг с другом и с подлежащим внеклеточным матриксом прочно, что позволяет эпителиальным пластам выдерживать большие механические нагрузки.

Подобно этому десмосомы прочно связывают друг с другом клетки сердечной мышцы, что позволяет им выполнять огромную механическую нагрузку, оставаясь связанными в единую сокращающуюся структуру.

В отличие от плотного контакта все типы сцепляющих контактов проницаемы для водных растворов и не играют никакой роли в ограничении диффузии.

Щелевые контакты (нексусы) считаются коммуникационными соединениями клеток; это структуры, которые участвуют в прямой передаче химических веществ из клетки в клетку, что может играть большую физиологическую роль не только при функционировании специализированных клеток, но и обеспечивать межклеточные взаимодействия при развитии организма, при дифференцировке его клеток (Рис.13).

Характерным для этого типа контактов является сближение плазматических мембран двух соседних клеток на расстояние 2-3 нм. Именно это обстоятельство долгое время не позволяло на ультратонких срезах отличить данный вид контакта от плотного разделительного (замыкающего) контакта. При использовании гидроокиси лантана было замечено, что некоторые плотные контакты пропускают контрастер. В этом случае лантан заполнял тонкую щель шириной около 3 нм между сближенными плазматическими мембранами соседних клеток. Это и послужило появлению термина - щелевой контакт. Дальнейший прогресс в расшифровке его строения был достигнут при использовании метода замораживания-скалывания. Оказалось, что на сколах мембран зоны щелевых контактов (размеров от 0,5 до 5 мкм) усеяны гексагонально расположенными с периодом 8-10 нм частицами 7-8 нм в диаметре, имеющими в центре канал около 2 нм шириной. Эти частицы получили название коннексонов .

В зонах щелевого контакта может быть от 10-20 до нескольких тысяч коннексонов в зависимости от функциональных особенностей клеток. Коннексоны были выделены препаративно, они состоят из шести субъединиц коннектина - белка с молекулярным весом около 30 тыс. Объединяясь друг с другом, коннектины образуют цилиндрический агрегат – коннексон, в центре которого располагается канал.

Отдельные коннексоны встроены в плазматическую мембрану так, что прободают ее насквозь. Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки так, что каналы двух коннексонов образуют единое целое. Коннексоны играют роль прямых межклеточных каналов, по которым ионы и низкомолекулярные вещества могут диффундировать из клетки в клетку. Было обнаружено, что коннексоны могут закрываться, изменяя диаметр внутреннего канала, и тем участвовать в регуляции транспорта молекул между клетками.

Функциональное значение щелевых контактов было понято при изучении гигантских клеток слюнных желез двукрылых. В такие клетки благодаря их величине легко можно вводить микроэлектроды, для того чтобы изучать электропроводимость их мембран. Если ввести электроды в две соседние клетки, то их плазматические мембраны проявляют низкое электрическое сопротивление, между клетками идет ток. Такая способность щелевых контактов служить местом транспорта низкомолекулярных соединений используется в тех клеточных системах, где нужна быстрая передача электрического импульса (волны возбуждения) от клетки к клетке без участия нервного медиатора. Так, все мышечные клетки миокарда сердца связаны с помощью щелевых контактов (кроме того, клетки там связаны и адгезивными контактами). Это создает условие для синхронного сокращения огромного количества клеток.

При росте культуры эмбриональных сердечных мышечных клеток (кардиомиоциты) некоторые клетки в пласте начинают независимо друг от друга спонтанно сокращаться с разной частотой, и лишь только после образования между ними щелевых контактов они начинают биться синхронно как единый сокращающийся пласт клеток. Таким же способом обеспечивается совместное сокращение гладкомышечных клеток в стенке матки.

Синаптический контакт (синапсы). Этот тип контактов характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом – рецептором или эффектором (например, нервно-мышечное окончание) (Рис.14).

Рис.9. Плотный контакт Рис.10. Простой контакт
Рис. 11. Зубчатый контакт Рис.12. Десмосомы
Рис.13. Нексусы Рис. 14. Синаптический контакт

Синапсы – участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому. В принципе подобного рода функциональная нагрузка, передача импульса может осуществляться и другими типами контактов (например, щелевым контактом в сердечной мышце), однако в синаптической связи достигается высокая эффективность в реализации нервного импульса.

Синапсы образуются на отростках нервных клеток – это терминальные участки дендритов и аксонов. Межнейронные синапсы обычно имеют грушевидных расширений, бляшек на конце отростка нервной клетки. Такое терминальное расширение отростка одной из нервных клеток может контактировать и образовывать синаптическую связь как с телом другой нервной клетки, так и с ее отростками. Периферические отростки нервных клеток (аксоны) образуют специфические контакты с клетками-эффекторами или клетками-рецепторами. Следовательно, синапс - это структура, образующаяся между участками двух клеток (так же как и десмосома). Мембраны этих клеток разделены межклеточным пространством - синаптической щелью шириной около 20-30 нм. Часто в просвете этой щели виден тонковолокнистый, перпендикулярно расположенный по отношению к мембранам материал. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой, воспринимающей импульс, - постсинаптической. В электронном микроскопе обе мембраны выглядят плотными, толстыми. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей, синаптических пузырьков, заполненных медиаторами. Синаптические пузырьки в момент прохождения нервного импульса выбрасывают свое содержимое в синаптическую щель. Постсинаптическая мембрана часто выглядит толще обычных мембран из-за скопления около нее со стороны цитоплазмы множества тонких фибрилл.

Плазмодесмы . Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки (Рис.15). Диаметр этих каналов обычно составляет 20-40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток.

Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки. Таким образом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет полного разграничения, отделения тела одной клетки от другой, это скорее представляет собой синцитий: объединение многих клеточных территорий с помощью цитоплазматических мостиков.

Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка. У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

Функциональная роль плазмодесм очень велика: с их помощью обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.