Свойства легочной ткани. Основы физиологии дыхания

МЕХАНИКА ДЫХАНИЯ

В нормальных условиях вентиляции дыхательные мышцы раз­вивают усилия, которые направлены на преодоление эластических, или упругих, и вязких сопротивлений. Упругие и вязкие сопротив­ления в дыхательной системе постоянно формируют различные со­отношения между давлением воздуха в воздухоносных путях и объемом легких, а также между давлением воздуха в воздухоносных путях и скоростью воздушного потока во время вдоха и выдоха.

Растяжимость легких

Растяжимость легких (compliance, С) служит показателем эластических свойств системы внешнего дыхания. Величину растя­жимости легких измеряют в виде зависимости давление - объем и рассчитывают по формуле: С = V/Δ P, где С - растяжимость легких.

Нормальная величина растяжимости легких взрослого человека составляет около 200 мл*см вод.ст.-1. У детей показатель растя­жимости легких значительно меньше, чем у взрослого человека.

Снижение растяжимости легких вызывают следующие факторы: повышение давления в сосудах легких или переполнение сосудов легких кровью; длительное отсутствие вентиляции легких или их отделов; нетренированность дыхательной функции; снижение упру­гих свойств ткани легких с возрастом.

Поверхностным натяжением жидкости называется сила, дейст­вующая в поперечном направлении на границу жидкости. Величина поверхностного натяжения определяется отношением этой силы к длине границы жидкости, единицей измерения в системе СИ явля­ется н/м. Поверхность альвеол покрыта тонким слоем воды. Моле­кулы поверхностного слоя воды с большой силой притягиваются друг к другу. Сила поверхностного натяжения тонкого слоя воды на поверхности альвеол всегда направлена на сжатие и спадение альвеол. Следовательно, поверхностное натяжение жидкости в аль­веолах является еще одним очень важным фактором, влияющим на растяжимость легких. Причем сила поверхностного натяжения аль­веол очень значительная и может вызвать их полное спадение, что исключило бы всякую возможность вентиляции легких. Спадению альвеол препятствует антиателектатический фактор, или сурфактант. В легких альвеолярные секреторные клетки, входящие в состав аэрогематического барьера, содержат осмиофильные пластин­чатые тельца, которые выбрасываются в альвеолы и превращаются в поверхностно-активное вещество - сурфактант. Синтез и замена сурфактанта происходит довольно быстро, поэтому нарушение кро­вотока в легких может снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах, что ведет к их ателектазу, или спадению. Недостаточная функция сурфактанта приводит к рас­стройствам дыхания, нередко вызывающим смерть.

В легких сурфактант выполняет следующие функции: снижает поверхностное натяжение альвеол; увеличивает растяжимость лег­ких; обеспечивает стабильность легочных альвеол, препятствуя их спадению и появлению ателектаза; препятствует транссудации (вы­ходу) жидкости на поверхность альвеол из плазмы капилляров легкого.

Основной (хотя и не единственной) функцией легких является обеспечение нормального газообмена. Внешнее дыхание - это процесс газообмена между атмосферным воздухом и кровью в легочных капиллярах, в результате которого происходит артериализация состава крови: повышается давление кислорода и снижается давление СО2. Интенсивность газообмена в первую очередь определяется тремя патофизиологическими механизмами (легочной вентиляцией, легочным кровотоком, диффузией газов через альвеолярно-капиллярную мембрану), которые обеспечиваются системой внешнего дыхания.

Легочная вентиляция

Легочная вентиляция определяется следующими факторами (А.П. Зильбер):

  1. механическим аппаратом вентиляции, который, в первую очередь, зависит от активности дыхательных мышц, их нервной регуляции и подвижности стенок грудной клетки;
  2. эластичностью и растяжимостью легочной ткани и грудной клетки;
  3. проходимостью воздухоносных путей;
  4. внутрилегочным распределением воздуха и его соответствием кровотоку в различных отделах легкого.

При нарушениях одного или нескольких из приведенных выше факторов могут развиваться клинически значимые вентиляционные нарушения, проявляющиеся несколькими типами вентиляционной дыхательной недостаточности.

Из дыхательных мышц наиболее значимая роль принадлежит диафрагме. Ее активное сокращение приводит к уменьшению внутригрудного и внутриплеврального давления, которое становится ниже атмосферного давления, в результате чего и происходит вдох.

Вдох осуществляется за счет активного сокращения дыхательных мышц (диафрагмы), а выдох происходит в основном за счет эластической тяги самого легкого и грудной стенки, создающей экспираторный градиент давления, в физиологических условиях достаточный для выведения воздуха через воздухоносные пути.

При необходимости увеличения объема вентиляции происходит сокращение наружных межреберных, лестничных и грудинно-ключично-сосцевидных мышц (дополнительные инспираторные мышцы), также приводящее к увеличению объема грудной клетки и снижению внутригрудного давления, что способствует вдоху. Дополнительными экспираторными мышцами считают мышцы передней брюшной стенки (наружные и внутренние косые, прямые и поперечные).

Эластичность легочной ткани и грудной клетки

Эластичность легких. Движение потока воздуха во время вдоха (внутрь легких) и выдоха (из легких) определяется градиентом давления между атмосферой и альвеолами так называемым трансторакальным давлением (Р тр / т):

Ртр/т = Р альв - Р атм где Р алв, - альвеолярное, а Р атм - атмосферное давление.

Во время вдоха Р альв и Р тр/т становятся отрицательными, во время выдоха - положительными. В конце вдоха и в конце выдоха, когда воздух по воздухоносным путям не движется, а голосовая щель открыта, Р альв равно Р атм.

Уровень Р альв в свою очередь зависит от величины внутриплеврального давления (Р пл) и так называемого давления эластической отдачи легкого (Р эл):

Давление эластической отдачи - это давление, создаваемое эластической паренхимой легкого и направленное внутрь легкого. Чем выше эластичность легочной ткани, тем более значительным должно быть снижение внутриплеврального давления, чтобы произошло расправление легкого во время вдоха, и, следовательно, тем большей должна быть активная работа инспираторных дыхательных мышц. Высокая эластичность способствует более быстрому спадению легкого во время выдоха.

Еще один важный показатель, обратный эластичности легочной ткани - апатическая растяжимость легкого - представляет собой меру поддатливости легкого при его расправлении. На растяжимость (и величину давления эластической отдачи) легкого влияет множество факторов:

  1. Объем легкого: при малом объеме (например, в начале вдоха) легкое более податливо. При больших объемах (например, на высоте максимального вдоха) растяжимость легкого резко уменьшается и становится равной нулю.
  2. Содержание эластических структур (эластина и коллагена) в легочной ткани. Эмфизема легких, для которой, как известно, характерно снижение эластичности легочной ткани, сопровождается увеличением растяжимости легкого (снижением давления эластической отдачи).
  3. Утолщение альвеолярных стенок вследствие их воспалительного (пневмония) или гемодинамического (застой крови в легком) отека, а также фиброзирование ткани легкого существенно уменьшают растяжимость (податливость) легкого.
  4. Силы поверхностного натяжения в альвеолах. Они возникают па поверхности раздела газа и жидкости, которая изнутри тонкой пленкой выстилает альвеолы, и стремятся уменьшить площадь этой поверхности, создавая внутри альвеол положительное давление. Таким образом, силы поверхностного натяжения вместе с эластическими структурами легких обеспечивают эффективное спадение альвеол во время выдоха и в то же время препятствуют расправлению (растяжению) легкого во время вдоха.

Сурфактант, выстилающий внутреннюю поверхность альвеолы - это вещество, уменьшающее силу поверхностного натяжения.

Активность сурфактанта тем выше, чем он плотнее. Поэтому па вдохе, когда плотность и, соответственно, активность сурфактанта уменьшается, силы поверхностного натяжения (т.е. силы, стремящиеся сократить поверхность альвеол) увеличиваются, что способствует последующему спадению легочной ткани во время выдоха. В конце выдоха плотность и активность сурфактанта возрастают, а силы поверхностного натяжения уменьшаются.

Таким образом, после окончания выдоха, когда активность сурфактанта максимальна, а силы поверхностного натяжения, препятствующие расправлению альвеол, минимальны, дли последующего расправления альвеол на вдохе требуются меньшие затраты энергии.

Важнейшими физиологическими функциями сурфактанта являются:

  • увеличение растяжимости легкого благодаря снижению сил поверхностного натяжения;
  • уменьшение вероятности спадения (коллапса) альвеол во время выдоха, поскольку при малых объемах легкого (в конце выдоха) его активность максимальна, а силы поверхностного натяжения минимальны;
  • предотвращение перераспределения воздуха из более мелких в более крупные альвеолы (согласно закону Лапласа).

При заболеваниях, сопровождающихся дефицитом сурфактанта, ригидность легких увеличивается, альвеолы спадаются (развиваются ателектазы), возникает дыхательная недостаточность.

Пластическая отдача грудной стенки

Эластические свойства грудной стенки, которые также оказывают большое влияние на характер легочной вентиляции, определяются состоянием костного скелета, межреберных мышц, мягких тканей, париетальной плевры.

При минимальных объемах грудной клетки и легких (во время максимального выдоха) и в начале вдоха эластическая отдача грудной стенки направлена кнаружи, что создает отрицательное давление и способствует расправлению легкого. По мере увеличения объема легкого во время вдоха эластическая отдача грудной стенки уменьшатся. Когда объем легкого достигает примерно 60% величины ЖЕЛ, эластическая отдача грудной стенки уменьшается до нуля, т.е. до уровня атмосферного давления. При дальнейшем увеличении объема легких эластическая отдача грудной стенки направлена кнутри, что создает положительное давление и способствует спадению легких во время последующего выдоха.

Некоторые заболевания сопровождаются повышением ригидности грудной стенки, что оказывает влияние на способность грудной клетки растягиваться (во время вдоха) и спадаться (во время выдоха). К числу таких заболеваний относятся ожирение, кифо- сколиоз, эмфизема легких, массивные шварты, фиброторакс и др.

Проходимость воздухоносных путей и мукоцилиарный клиренс

Проходимость воздухоносных путей во многом зависит от нормального дренирования трахеобронхиального секрета, что обеспечивается, прежде всего, функционированием механизма мукоцилиарного очищения (клиренса) и нормальным кашлевым рефлексом.

Защитная функция мукоцилиарного аппарата определяется адекватной и согласованной функцией мерцательного и секреторного эпителия, в результате чего тонкая пленка секрета перемещается по поверхности слизистой оболочки бронхов и инородные частицы удаляются. Перемещение бронхиального секрета происходит за счет быстрых толчков ресничек в краниальном направлении с более медленной отдачей в противоположную сторону. Частота колебаний ресничек составляет 1000-1200 в мин, что обеспечивает движение бронхиальной слизи со скоростью 0,3-1,0 см/мин в бронхах и 2-3 см/мин в трахее.

Следует также помнить, что бронхиальная слизь состоит из 2-х слоев: нижнего жидкого слоя (золя) и верхнего вязко-эластичного - геля, которого касаются верхушки ресничек. Функция реснитчатого эпителия во многом зависит от соотношения толщины юля и геля: увеличение толщины геля или уменьшение толщины золя приводят к снижению эффективности мукоцилиарного клиренса.

На уровне респираторных бронхиол и альвеол мукоцилиарного аппарата ист. Здесь очищение осуществляется с помощью кашлевого рефлекса и фагоцитарной активности клеток.

При воспалительном поражении бронхов, особенно хроническом, эпителий морфологически и функционально перестраивается, что может приводить к мукоцилиарной недостаточности (снижению защитных функций мукоцилиарного аппарата) и скоплению мокроты в просвете бронхов.

В патологических условиях проходимость воздухоносных путей зависит не только от функционирования механизма мукоцилиарного очищения, но и от наличия бронхоспазма, воспалительного отека слизистой оболочки и феномена раннего экспираторного закрытия (коллапса) мелких бронхов.

Регуляция просвета бронхов

Тонус гладкой мускулатуры бронхов определяется несколькими механизмами, связанными со стимуляцией многочисленных специфических рецепторов бронхов:

  1. Холинергические (парасимпатические) влияния происходят в результате взаимодействия нейромедиатора ацетилхолина со специфическими мускариновыми М-холинорецепторами. В результате такого взаимодействия развивается бронхоспазм.
  2. Симпатическая иннервация гладкой мускулатуры бронхов у человека выражена в малой степени, в отличие, например, от гладкой мускулатуры сосудов и сердечной мышцы. Симпатические влияния на бронхи осуществляются в основном благодаря воздействию циркулирующего адреналина на бета2-адренорецепторы, что приводит к расслаблению гладкой мускулатуры.
  3. На тонус гладкой мускулатуры влияет также т.н. «неадренергическая, нехолинергическая» нервная система (НАНХ), волокна которой проходят в составе блуждающего нерва и высвобождают несколько специфических нейромедиаторов, взаимодействующих с соответствующими рецепторами гладкой мускулатуры бронхов. Важнейшими из них являются:
    • вазоактивный интестинальный полипептид (VIP);
    • субстанция Р.

Стимуляция VIP-рецепторов приводит к выраженному расслаблению, а бета-рецепторов к сокращению гладких мышц бронхов. Считается, что нейроны НАНХ-системы оказывают наибольшее влияние па регуляцию просвета воздухоносных путей (К.К. Murray).

Кроме того, в бронхах содержится большое количество рецепторов, взаимодействующих с различными биологически активными веществами, в том числе с медиаторами воспаления - гистамином, брадикинином, лейкотриенами, простагландинами, фактором активации тромбоцитов (ФАТ), серотонином, аденозином и др.

Тонус гладкой мускулатуры бронхов регулируется несколькими нейрогуморальными механизмами:

  1. Дилатация бронхов развивается при стимуляции:
    • бета2-адренорецепторов адреналином;
    • VIР-рецепторов (системы НАНХ) вазоактивным интестинальным полипептидом.
  2. Сужение просвета бронхов возникает при стимуляции:
    • М-холинергических рецепторов ацетилхолином;
    • рецепторов к субстанции Р (системы НАНХ);
    • Альфа-адренорецепторов (например, при блокаде или снижении чувствительности бета2-адренергических рецепторов).

Внутрилегочное распределение воздуха и его соответствие кровотоку

Неравномерность вентиляции легких, существующая в норме, определяется, прежде всего, неоднородностью механических свойств легочной ткани. Наиболее активно вентилируются базальные, в меньшей степени - верхние отделы легких. Изменение эластических свойств альвеол (в частности, при эмфиземе легких) или нарушение бронхиальной проходимости значительно усугубляют неравномерность вентиляции, увеличивают физиологическое мертвое пространство и снижают эффективность вентиляции.

Диффузия газов

Процесс диффузии газов через альвеолярно-капиллярного мембрану зависит

  1. от градиента парциального давления газов по обе стороны мембраны (в альвеолярном воздухе и в легочных капиллярах);
  2. от толщины альвеолярно-капиллярной мембраны;
  3. от общей поверхности зоны диффузии в легком.

У здорового человека парциальное давление кислорода (РО2) в альвеолярном воздухе в норме составляет 100 мм рт. ст., а в венозной крови - 40 мм рт. ст. Парциальное давление СО2 (РСО2) в венозной крови составляет 46 мм рт. ст., в альвеолярном воздухе - 40 мм рт. ст. Таким образом, градиент давления по кислороду составляет 60 мм рт. ст., а по углекислому газу - всего 6 мм рт. ст. Однако скорость диффузии СО2 через альвеолярно-капиллярную мембрану примерно в 20 раз больше, чем О2. Поэтому обмен СО2 в легких происходит достаточно полно, несмотря на сравнительно низкий градиент давления между альвеолами и капиллярами.

Альвеолярно-капиллярная мембрана состоит из сурфактантного слоя, выстилающего внутреннюю поверхность альвеолы, альвеолярной мембраны, интерстициального пространства, мембраны легочного капилляра, плазмы крови и мембраны эритроцита. Повреждение каждого из этих компонентов альвеолярно-капиллярной мембраны может приводить к существенному затруднению диффузии газов. Вследствие этого при заболеваниях указанные выше значения парциальных давлений О2 и СО2 в альвеолярном воздухе и капиллярах могут существенно изменяться.

Легочный кровоток

В легких существуют две системы кровообращения: бронхиальный кровоток, относящийся к большому кругу кровообращения, и собственно легочный кровоток, или так называемый малый круг кровообращения. Между ними как при физиологических, так и при патологических условиях существуют анастомозы.

Легочный кровоток в функциональном отношении расположен между правой и левой половинами сердца. Движущей силой легочного кровотока служит градиент давления между правым желудочком и левым предсердием (в норме составляющий около 8 мм рт. ст.). В легочные капилляры по артериям поступает бедная кислородом и насыщенная углекислым газом венозная кровь. В результате диффузии газов в области альвеол происходят насыщение крови кислородом и ее очищение от углекислого газа, в результате чего от легких в левое предсердие по венам оттекает артериальная кровь. На практике эти величины могут колебаться в значительных пределах. Особенно это относится к уровню РаО2 в артериальной крови, который составляет обычно около 95 мм рт. ст.

Уровень газообмена в легких при нормальной работе дыхательных мышц, хорошей проходимости воздухоносных путей и малоизмененной эластичности легочной ткани определяется скоростью перфузии крови через легкие и состоянием альвеолярно-капиллярной мембраны, через которую под действием градиента парциального давления кислорода и углекислого газа осуществляется диффузия газов.

Вентиляционно-перфузионные отношения

Уровень газообмена в легких, помимо интенсивности легочной вентиляции и диффузии газов, определяется также величиной вентиляционно-перфузионного отношения (V/Q). В норме при концентрации кислорода но вдыхаемом воздухе 21% и нормальном атмосферном давлении отношение V/Q составляет 0,8.

При прочих равных условиях уменьшение оксигенации артериальной крови может быть обусловлено двумя причинами:

  • уменьшением легочной вентиляции при сохраненном прежнем уровне кровотока, когда V/Q
  • уменьшением кровотока при сохраненной вентиляции альвеол (V/Q > 1,0).

Поскольку стенки мелких бронхов обладают большой податливостью, их просвет поддерживается напряжением эластических структур стромы легких, радиально растягивающих бронхи. При максимальном вдохе эластические структуры легких предельно напряжены.

По мере выдоха их напряжение постепенно ослабевает, в результате чего в определенный момент выдоха происходит сдавление бронхов и перекрытие их просвета. ООЛ и представляет собою тот объем легких, при котором экспираторное усилие перекрывает мелкие бронхи и препятствует дальнейшему опорожнению легких.

Чем беднее эластический каркас легких, тем при меньшем объеме выдоха спадаются бронхи. Этим и объясняется закономерное увеличение ООЛ у лиц пожилого возраста и особенно заметное его увеличение при эмфиземе легких.

Увеличение ООЛ свойственно также и больным с нарушением бронхиальной проходимости. Этому способствует увеличение внутригрудного давления на выдохе, необходимое для продвижения воздуха по суженному бронхиальному дереву.

Одновременно увеличивается и ФОЕ, что в известной мере является компенсаторной реакцией, так как чем больше уровень спокойного дыхания смещен в инспираторную сторону, тем сильнее растягиваются бронхи и тем больше силы эластической отдачи легких, направленные на преодоление повышенного бронхиального сопротивления.

Как показали специальные исследования (А. П. Зильбер, 1974), некоторые бронхи спадаются раньше, чем будет достигнут уровень максимального выдоха. Объем легких, при котором начинают спадаться бронхи, так называемый объем закрытия, и в норме больше ООЛ, у больных он может быть больше ФОЕ. В этих случаях даже при спокойном дыхании в некоторых зонах легких вентиляция нарушается. Смещение уровня дыхания в инспиратор-ную сторону, т. е. увеличение ФОЕ, в такой ситуации оказывается еще более целесообразным.

«Руководство по пульмонологии», Н.В.Путов

По определению растяжимость легких равна изменению их объема на единицу изменения давления. Для ее оценки необходимо измерить внутриплевральное давление.

На практике при этом регистрируют давление в пищеводе: обследуемый заглатывает катетер с маленьким баллончиком на конце. Пищеводное давление не равно в точности внутриплевральному, однако хорошо отражает динамику его изменений. Если обследуемый лежит на спине, то этот метод не даст точных данных, так как на результаты будет влиять тяжесть органов средостения.

Растяжимость легких можно измерить очень просто: обследуемого просят сделать максимально глубокий вдох, а затем выдыхать воздух в спирометр порциями, скажем по 500 мл. При этом определяют давление в пищеводе. После выдоха каждой порции обследуемый должен раскрыть голосовую щель и выждать несколько секунд, пока дыхательная система придет в стационарное состояние. Так строят график давление—объем. Этот метод позволяет получить наибольшую информацию об упругости легких. Важно отметить, что растяжимость, соответствующая крутизне наклона кривой, зависит от исходного легочного объема. Обычно этот наклон определяют во время выдоха, начиная с объема, превышающего ФОЕ на 1 л. Однако даже в этих условиях воспроизводимость результатов оставляет желать лучшего.

Растяжимость легких можно также измерить при спокойном дыхании. Этот способ основан на том, что в отсутствие потока воздуха (в конце вдоха и выдоха) внутриплевральное давление отражает только эластическую тягу легких и не зависит от сил, возникающих при движении воздушной струи. Таким образом, растяжимость будет равна отношению разности легочных объемов в конце вдоха и выдоха к разности внутриплевральных давлений в эти же моменты.

Такой метод нельзя применять в случае больных с поражениями воздухоносных путей, так как у них различны постоянные времени заполнения разных участков легких и. поток воздуха в них сохраняется даже при отсутствии его в центральных дыхательных путях.

Воздухоносные пути участка 2 легких частично закупорены, поэтому постоянная времени его заполнения больше. Во время вдоха (А) воздух медленнее поступает в этот участок, и поэтому он продолжает заполняться даже после достижения равновесия (Б) остальными отделами легких (1). Более того, заполнение аномального участка может идти даже после начала общего выдоха (В). При увеличении частоты дыхания объем вентиляции этого участка становится все меньше.

Из рисунка видно, что при частичном перекрытии воздухоносных путей заполнение соответствующего им участка легких всегда будет происходить медленнее, чем заполнение остальных участков. Более того, он может продолжать заполняться даже тогда, когда из остальных отделов легких воздух уже выходит. В результате воздух перемещается в пораженный участок из соседних (так называемый эффект «воздушного маятника»). С увеличением частоты дыхания объем воздуха, поступающего в такой участок, становится все меньше и меньше. Иными словами, дыхательный объем при этом распределяется по все меньшей массе легочной ткани и создается впечатление, что растяжимость легких понижается.

«Физиология дыхания», Дж. Уэст

Существуют четыре причины понижения РO2 в артериальной крови (гипоксемии): гиповентиляция; нарушение диффузии; наличие шунтов; неравномерность вентиляционно-перфузионных отношений. Для того чтобы различать эти четыре причины, необходимо помнить, что гиповентиляция всегда приводит к повышению РCO2 в артериальной крови и что РO2 в этой крови при дыхании чистым кислородом не возрастает до должной величины лишь в том случае,…

Сопротивление воздухоносных путей равно отношению разности давлений между альвеолами и ротовой полостью к расходу воздуха. Его можно измерить методом общей плетизмографии. Перед тем как обследуемый делает вдох (Л), давление в плетизмографической камере равно атмосферному. Во время вдоха давление в альвеолах снижается, а объем альвеолярного воздуха увеличивается на величину ∆V. При этом воздух в камере сжимается,…

Выше мы убедились в том, что оценка растяжимости легких по внутриплевральному давлению в конце вдоха или выдоха при спокойном дыхании не дает надежных результатов у больных с поражениями дыхательных путей из-за различий в постоянной времени заполнения разных участков легких. Такая кажущаяся или «динамическая» растяжимость легких уменьшается при увеличении частоты дыхания: когда время, затрачиваемое на вдох,…

способность отвечать на нагрузку повышением напряжения, которая включает в себя:

    упругость – способность восстанавливать свою форму и объем после прекращения действия внешних сил, вызывающих деформацию

    жесткость – способность сопротивляться дальнейшей деформации при превышении предала упругости

Причины эластических свойств легких:

    напряжение эластических волокон паренхимы легких

    поверхностное натяжение жидкости, выстилающей альвеолы – создается сурфактантом

    кровенаполнение легких (чем выше кровенаполнение, тем меньше эластичность

Растяжимость – свойство обратное упругости, связано с наличием эластических и коллагеновых волокон, которые образуют спиральную сеть вокруг альвеол

Пластичность – свойство противоположное жесткости

Функции легких

Газообменная – обогащение крови кислородом, используемым тканями организма, и удаление из нее углекислого газа: достигается благодаря легочному кровообращению. Кровь от органов тела возвращается к правой стороне сердца и по легочным артериям направляется в легкие

Негазообменные:

    З ащитная – образование антител, фагоцитоз альвеолярными фагоцитами, выработка лизоцима, интерферона, лактоферрина, иммуноглобулинов; в капиллярах задерживаются и разрушаются микробы, агрегаты жировых клеток, тромбоэмболы

    Участие в процессах терморегуляции

    Участие в процессах выделения – удаление СО 2 , воды (около 0,5 л/сут.) и некоторых летучих веществ: этанола, эфира, закиси азота ацетона, этилмеркаптана

    Инактивация БАВ – более 80 % брадикинина, введенного в легочный кровоток, разрушается при однократном прохождении крови через легкое, происходит превращение ангиотензина I в ангиотензин II под влиянием ангиотензиназы; инактивируется 90-95 % простагландинов групп Е и Р

    Участие в выработке БАВ гепарина, тромбоксана В 2 , простагландинов, тромбопластина, факторов свертывания крови VII и VIII, гистамина, серотонина

Внешнее дыхание

Процесс вентиляции легких, обеспечивающий газообмен между организмом и окружающей средой. Осуществляется благодаря наличию дыхательного центра, его афферентных и эфферентных систем, дыхательных мышц. Оценивается по соотношению альвеолярной вентиляции к минутному объему. Для характеристики внешнего дыхания используют статические и динамические показатели внешнего дыхания

Дыхательный цикл – ритмически повторяющаяся смена состояния дыхательного центра и исполнительных органов дыхания

Воздух попадает в легкие и выходит из них благодаря работе дыхательных мышц. В результате их сокращения и расслабления объем грудной полости изменяется

Дыхательные мышцы

произвольная поперечнополосатая мускулатура, осуществляющая периодические изменения объема грудной клетки

Рис. 12.11. Дыхательные мышцы

Диафрагма – плоская мышца, отделяющая грудную полость от брюшной. Она образует два купола, левый и правый, направленные выпуклостями вверх, между которыми находится небольшая впадина для сердца. В ней есть несколько отверстий, сквозь которые из грудной области в брюшную проходят очень важные структуры организма. Сокращаясь, она увеличивает объем грудной полости и обеспечивает приток воздуха в легкие

Рис. 12.12. Положение диафрагмы во время вдоха и выдоха

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.